Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 104 (5): 1604-1609

Copyright © 2007 by the National Academy of Sciences.


MicroRNA-155 is induced during the macrophage inflammatory response

Ryan M. O'Connell*, Konstantin D. Taganov*, Mark P. Boldin*, Genhong Cheng{dagger}, and David Baltimore*,{ddagger}

*Department of Biology, California Institute of Technology, 330 Braun, 1200 East California Boulevard, Pasadena, CA 91125; and {dagger}Departments of Microbiology, Immunology, and Molecular Genetics, University of California, 650 Charles East Young Drive South, Los Angeles, CA 90095

Contributed by David Baltimore, December 4, 2006

Received for publication November 10, 2006.

Abstract: The mammalian inflammatory response to infection involves the induction of several hundred genes, a process that must be carefully regulated to achieve pathogen clearance and prevent the consequences of unregulated expression, such as cancer. Recently, microRNAs (miRNAs) have emerged as a class of gene expression regulators that has also been linked to cancer. However, the relationship between inflammation, innate immunity, and miRNA expression is just beginning to be explored. In the present study, we use microarray technology to identify miRNAs induced in primary murine macrophages after exposure to polyriboinosinic:polyribocytidylic acid or the cytokine IFN-beta. miR-155 was the only miRNA of those tested that was substantially up-regulated by both stimuli. It also was induced by several Toll-like receptor ligands through myeloid differentiation factor 88- or TRIF-dependent pathways, whereas up-regulation by IFNs was shown to involve TNF-{alpha} autocrine signaling. Pharmacological inhibition of the kinase JNK blocked induction of miR-155 in response to either polyriboinosinic:polyribocytidylic acid or TNF-{alpha}, suggesting that miR-155-inducing signals use the JNK pathway. Together, these findings characterize miR-155 as a common target of a broad range of inflammatory mediators. Importantly, because miR-155 is known to function as an oncogene, these observations identify a potential link between inflammation and cancer.

Key Words: cancer • inflammation • innate immunity • cytokines

Freely available online through the PNAS open access option.

Author contributions: R.M.O. and K.D.T. designed research; R.M.O. and K.D.T. performed research; R.M.O., M.P.B., G.C., and D.B. contributed new reagents/analytic tools; R.M.O., K.D.T., M.P.B., G.C., and D.B. analyzed data; and R.M.O. and D.B. wrote the paper.

The authors declare no conflict of interest.

This article contains supporting information online at

{ddagger}To whom correspondence should be addressed. E-mail: baltimo{at}

© 2007 by The National Academy of Sciences of the USA

MicroRNA-155 Deficiency Results in Decreased Macrophage Inflammation and Attenuated Atherogenesis in Apolipoprotein E-Deficient Mice.
F. Du, F. Yu, Y. Wang, Y. Hui, K. Carnevale, M. Fu, H. Lu, and D. Fan (2014)
Arterioscler Thromb Vasc Biol 34, 759-767
   Abstract »    Full Text »    PDF »
The Role of Ets2 Transcription Factor in the Induction of MicroRNA-155 (miR-155) by Lipopolysaccharide and Its Targeting by Interleukin-10.
S. R. Quinn, N. E. Mangan, B. E. Caffrey, M. P. Gantier, B. R. G. Williams, P. J. Hertzog, C. E. McCoy, and L. A. J. O'Neill (2014)
J. Biol. Chem. 289, 4316-4325
   Abstract »    Full Text »    PDF »
microRNA-224 regulates Pentraxin 3, a component of the humoral arm of innate immunity, in inner ear inflammation.
A. Rudnicki, S. Shivatzki, L. A. Beyer, Y. Takada, Y. Raphael, and K. B. Avraham (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
The long noncoding RNA THRIL regulates TNF{alpha} expression through its interaction with hnRNPL.
Z. Li, T.-C. Chao, K.-Y. Chang, N. Lin, V. S. Patil, C. Shimizu, S. R. Head, J. C. Burns, and T. M. Rana (2014)
PNAS 111, 1002-1007
   Abstract »    Full Text »    PDF »
MicroRNA-155 Tunes Both the Threshold and Extent of NK Cell Activation via Targeting of Multiple Signaling Pathways.
R. P. Sullivan, L. A. Fogel, J. W. Leong, S. E. Schneider, R. Wong, R. Romee, T.-H. Thai, V. Sexl, S. J. Matkovich, G. W. Dorn II, et al. (2013)
J. Immunol. 191, 5904-5913
   Abstract »    Full Text »    PDF »
Macrophage MicroRNA-155 Promotes Cardiac Hypertrophy and Failure.
S. Heymans, M. F. Corsten, W. Verhesen, P. Carai, R. E. W. van Leeuwen, K. Custers, T. Peters, M. Hazebroek, L. Stoger, E. Wijnands, et al. (2013)
Circulation 128, 1420-1432
   Abstract »    Full Text »    PDF »
Interferon Regulatory Factor 4 Is Activated through c-Src-Mediated Tyrosine Phosphorylation in Virus-Transformed Cells.
L. Wang and S. Ning (2013)
J. Virol. 87, 9672-9679
   Abstract »    Full Text »    PDF »
miR-155-Deficient Bone Marrow Promotes Tumor Metastasis.
F. Yu, X. Jia, F. Du, J. Wang, Y. Wang, W. Ai, and D. Fan (2013)
Mol. Cancer Res. 11, 923-936
   Abstract »    Full Text »    PDF »
MicroRNAs in flow-dependent vascular remodelling.
P. Neth, M. Nazari-Jahantigh, A. Schober, and C. Weber (2013)
Cardiovasc Res 99, 294-303
   Abstract »    Full Text »    PDF »
A role for miR-155 in enabling tumor-infiltrating innate immune cells to mount effective antitumor responses in mice.
E. Zonari, F. Pucci, M. Saini, R. Mazzieri, L. S. Politi, B. Gentner, and L. Naldini (2013)
Blood 122, 243-252
   Abstract »    Full Text »    PDF »
Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b.
G. Curtale, M. Mirolo, T. A. Renzi, M. Rossato, F. Bazzoni, and M. Locati (2013)
PNAS 110, 11499-11504
   Abstract »    Full Text »    PDF »
miR-155 in Acute Myeloid Leukemia: Not Merely a Prognostic Marker?.
C. E. Joyce and C. D. Novina (2013)
J. Clin. Oncol. 31, 2219-2221
   Full Text »    PDF »
Clinical Role of microRNAs in Cytogenetically Normal Acute Myeloid Leukemia: miR-155 Upregulation Independently Identifies High-Risk Patients.
G. Marcucci, K. S. Maharry, K. H. Metzeler, S. Volinia, Y.-Z. Wu, K. Mrozek, D. Nicolet, J. Kohlschmidt, S. P. Whitman, J. H. Mendler, et al. (2013)
J. Clin. Oncol. 31, 2086-2093
   Abstract »    Full Text »    PDF »
Autoantibody Induction by DNA-Containing Immune Complexes Requires HMGB1 with the TLR2/MicroRNA-155 Pathway.
Z. Wen, L. Xu, X. Chen, W. Xu, Z. Yin, X. Gao, and S. Xiong (2013)
J. Immunol. 190, 5411-5422
   Abstract »    Full Text »    PDF »
miR-155 Regulates Immune Modulatory Properties of Mesenchymal Stem Cells by Targeting TAK1-binding Protein 2.
C. Xu, G. Ren, G. Cao, Q. Chen, P. Shou, C. Zheng, L. Du, X. Han, M. Jiang, Q. Yang, et al. (2013)
J. Biol. Chem. 288, 11074-11079
   Abstract »    Full Text »    PDF »
The microRNA-342-5p Fosters Inflammatory Macrophage Activation Through an Akt1- and microRNA-155-Dependent Pathway During Atherosclerosis.
Y. Wei, M. Nazari-Jahantigh, L. Chan, M. Zhu, K. Heyll, J. Corbalan-Campos, P. Hartmann, A. Thiemann, C. Weber, and A. Schober (2013)
Circulation 127, 1609-1619
   Abstract »    Full Text »    PDF »
Pathogenic arterial remodeling: the good and bad of microRNAs.
Y. Wei, A. Schober, and C. Weber (2013)
Am J Physiol Heart Circ Physiol 304, H1050-H1059
   Abstract »    Full Text »    PDF »
Differential microRNA (miRNA) expression could explain microbial tolerance in a novel chronic peritonitis model.
Z. Kanaan, R. Barnett, S. Gardner, B. Keskey, D. Druen, A. Billeter, and W. G. Cheadle (2013)
Innate Immunity 19, 203-212
   Abstract »    Full Text »    PDF »
Combined Serum CA19-9 and miR-27a-3p in Peripheral Blood Mononuclear Cells to Diagnose Pancreatic Cancer.
W.-S. Wang, L.-X. Liu, G.-P. Li, Y. Chen, C.-Y. Li, D.-Y. Jin, and X.-L. Wang (2013)
Cancer Prevention Research 6, 331-338
   Abstract »    Full Text »    PDF »
1,25-Dihydroxyvitamin D Promotes Negative Feedback Regulation of TLR Signaling via Targeting MicroRNA-155-SOCS1 in Macrophages.
Y. Chen, W. Liu, T. Sun, Y. Huang, Y. Wang, D. K. Deb, D. Yoon, J. Kong, R. Thadhani, and Y. C. Li (2013)
J. Immunol. 190, 3687-3695
   Abstract »    Full Text »    PDF »
An Extraribosomal Function of Ribosomal Protein L13a in Macrophages Resolves Inflammation.
D. Poddar, A. Basu, W. M. Baldwin III, R. V. Kondratov, S. Barik, and B. Mazumder (2013)
J. Immunol. 190, 3600-3612
   Abstract »    Full Text »    PDF »
MicroRNAs and respiratory diseases.
H. Rupani, T. Sanchez-Elsner, and P. Howarth (2013)
Eur. Respir. J. 41, 695-705
   Abstract »    Full Text »    PDF »
Enhanced Susceptibility to Citrobacter rodentium Infection in MicroRNA-155-Deficient Mice.
S. Clare, V. John, A. W. Walker, J. L. Hill, C. Abreu-Goodger, C. Hale, D. Goulding, T. D. Lawley, P. Mastroeni, G. Frankel, et al. (2013)
Infect. Immun. 81, 723-732
   Abstract »    Full Text »    PDF »
Rat mir-155 generated from the lncRNA Bic is 'hidden' in the alternate genomic assembly and reveals the existence of novel mammalian miRNAs and clusters.
P. Uva, L. Da Sacco, M. Del Corno, A. Baldassarre, P. Sestili, M. Orsini, A. Palma, S. Gessani, and A. Masotti (2013)
RNA 19, 365-379
   Abstract »    Full Text »    PDF »
MicroRNA-126, -145, and -155: A Therapeutic Triad in Atherosclerosis?.
Y. Wei, M. Nazari-Jahantigh, P. Neth, C. Weber, and A. Schober (2013)
Arterioscler Thromb Vasc Biol 33, 449-454
   Abstract »    Full Text »    PDF »
Genome-Wide Analyses of Amphioxus MicroRNAs Reveal an Immune Regulation via miR-92d Targeting C3.
R. Yang, T. Zheng, X. Cai, Y. Yu, C. Yu, L. Guo, S. Huang, W. Zhu, R. Zhu, Q. Yan, et al. (2013)
J. Immunol. 190, 1491-1500
   Abstract »    Full Text »    PDF »
A Newly Identified MicroRNA, mmu-miR-7578, Functions as a Negative Regulator on Inflammatory Cytokines Tumor Necrosis Factor-{alpha} and Interleukin-6 via Targeting Egr1 in Vivo.
J. Zhang, S. Xie, W. Ma, Y. Teng, Y. Tian, X. Huang, and Y. Zhang (2013)
J. Biol. Chem. 288, 4310-4320
   Abstract »    Full Text »    PDF »
Mononuclear phagocyte miRNome analysis identifies miR-142 as critical regulator of murine dendritic cell homeostasis.
A. Mildner, E. Chapnik, O. Manor, S. Yona, K.-W. Kim, T. Aychek, D. Varol, G. Beck, Z. B. Itzhaki, E. Feldmesser, et al. (2013)
Blood 121, 1016-1027
   Abstract »    Full Text »    PDF »
Coordinated regulation of synthesis and stability of RNA during the acute TNF-induced proinflammatory response.
M. T. Paulsen, A. Veloso, J. Prasad, K. Bedi, E. A. Ljungman, Y.-C. Tsan, C.-W. Chang, B. Tarrier, J. G. Washburn, R. Lyons, et al. (2013)
PNAS 110, 2240-2245
   Abstract »    Full Text »    PDF »
MicroRNAs in Immune Response and Macrophage Polarization.
G. Liu and E. Abraham (2013)
Arterioscler Thromb Vasc Biol 33, 170-177
   Abstract »    Full Text »    PDF »
Micro-RNA 155 Is Required for Optimal CD8+ T Cell Responses to Acute Viral and Intracellular Bacterial Challenges.
E. F. Lind, A. R. Elford, and P. S. Ohashi (2013)
J. Immunol. 190, 1210-1216
   Abstract »    Full Text »    PDF »
In Vitro Sensitivity of CLL Cells to Fludarabine May Be Modulated by the Stimulation of Toll-like Receptors.
E. Fonte, B. Apollonio, L. Scarfo, P. Ranghetti, C. Fazi, P. Ghia, F. Caligaris-Cappio, and M. Muzio (2013)
Clin. Cancer Res. 19, 367-379
   Abstract »    Full Text »    PDF »
Respiratory Syncytial Virus Regulates Human MicroRNAs by Using Mechanisms Involving Beta Interferon and NF-{kappa}B.
N. J. Thornburg, S. L. Hayward, and J. E. Crowe Jr. (2012)
mBio 3, e00220-12
   Abstract »    Full Text »    PDF »
Essential Role of MicroRNA-155 in Regulating Endothelium-Dependent Vasorelaxation by Targeting Endothelial Nitric Oxide Synthase.
H.-X. Sun, D.-Y. Zeng, R.-T. Li, R.-P. Pang, H. Yang, Y.-L. Hu, Q. Zhang, Y. Jiang, L.-Y. Huang, Y.-B. Tang, et al. (2012)
Hypertension 60, 1407-1414
   Abstract »    Full Text »    PDF »
Proteasomal Degradation of Nod2 Protein Mediates Tolerance to Bacterial Cell Wall Components.
K.-H. Lee, A. Biswas, Y.-J. Liu, and K. S. Kobayashi (2012)
J. Biol. Chem. 287, 39800-39811
   Abstract »    Full Text »    PDF »
Respiratory syncytial virus modifies microRNAs regulating host genes that affect virus replication.
A. Bakre, P. Mitchell, J. K. Coleman, L. P. Jones, G. Saavedra, M. Teng, S. M. Tompkins, and R. A. Tripp (2012)
J. Gen. Virol. 93, 2346-2356
   Abstract »    Full Text »    PDF »
MicroRNA 21 in tissue injury and inflammation: AUTHORS' RETROSPECTIVE.
C. K. Sen and S. Roy (2012)
Cardiovasc Res 96, 230-233
   Full Text »    PDF »
MicroRNAs and Their Target Genes in Gingival Tissues.
C. Stoecklin-Wasmer, P. Guarnieri, R. Celenti, R. T. Demmer, M. Kebschull, and P. N. Papapanou (2012)
Journal of Dental Research 91, 934-940
   Abstract »    Full Text »    PDF »
Expression, Circulation, and Excretion Profile of MicroRNA-21, -155, and -18a Following Acute Kidney Injury.
J. Saikumar, D. Hoffmann, T.-M. Kim, V. R. Gonzalez, Q. Zhang, P. L. Goering, R. P. Brown, V. Bijol, P. J. Park, S. S. Waikar, et al. (2012)
Toxicol. Sci. 129, 256-267
   Abstract »    Full Text »    PDF »
Tissue- and Plasma-Specific MicroRNA Signatures for Atherosclerotic Abdominal Aortic Aneurysm.
K. Kin, S. Miyagawa, S. Fukushima, Y. Shirakawa, K. Torikai, K. Shimamura, T. Daimon, Y. Kawahara, T. Kuratani, and Y. Sawa (2012)
JAHA 1, e000745
   Abstract »    Full Text »    PDF »
Decreased microRNA-155 Expression in Ocular Behcet's Disease but Not in Vogt Koyanagi Harada Syndrome.
Q. Zhou, X. Xiao, C. Wang, X. Zhang, F. Li, Y. Zhou, A. Kijlstra, and P. Yang (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5665-5674
   Abstract »    Full Text »    PDF »
MicroRNA Profiling Identifies MicroRNA-155 as an Adverse Mediator of Cardiac Injury and Dysfunction During Acute Viral Myocarditis.
M. F. Corsten, A. Papageorgiou, W. Verhesen, P. Carai, M. Lindow, S. Obad, G. Summer, S. L. M. Coort, M. Hazebroek, R. van Leeuwen, et al. (2012)
Circ. Res. 111, 415-425
   Abstract »    Full Text »    PDF »
miRNA-125b regulates TNF-{alpha} production in CD14+ neonatal monocytes via post-transcriptional regulation.
H.-C. Huang, H.-R. Yu, L.-T. Huang, H.-C. Huang, R.-F. Chen, I.-C. Lin, C.-Y. Ou, T.-Y. Hsu, and K. D. Yang (2012)
J. Leukoc. Biol. 92, 171-182
   Abstract »    Full Text »    PDF »
Identification of Resting and Type I IFN-Activated Human NK Cell miRNomes Reveals MicroRNA-378 and MicroRNA-30e as Negative Regulators of NK Cell Cytotoxicity.
P. Wang, Y. Gu, Q. Zhang, Y. Han, J. Hou, L. Lin, C. Wu, Y. Bao, X. Su, M. Jiang, et al. (2012)
J. Immunol. 189, 211-221
   Abstract »    Full Text »    PDF »
Nanoparticle-based therapy in an in vivo microRNA-155 (miR-155)-dependent mouse model of lymphoma.
I. A. Babar, C. J. Cheng, C. J. Booth, X. Liang, J. B. Weidhaas, W. M. Saltzman, and F. J. Slack (2012)
PNAS 109, E1695-E1704
   Abstract »    Full Text »    PDF »
Identifying Functional MicroRNAs in Macrophages with Polarized Phenotypes.
J. W. Graff, A. M. Dickson, G. Clay, A. P. McCaffrey, and M. E. Wilson (2012)
J. Biol. Chem. 287, 21816-21825
   Abstract »    Full Text »    PDF »
Integrin CD11b Negatively Regulates TLR9-Triggered Dendritic Cell Cross-Priming by Upregulating microRNA-146a.
Y. Bai, C. Qian, L. Qian, F. Ma, J. Hou, Y. Chen, Q. Wang, and X. Cao (2012)
J. Immunol. 188, 5293-5302
   Abstract »    Full Text »    PDF »
Induction of microRNA-155 is TLR- and type IV secretion system-dependent in macrophages and inhibits DNA-damage induced apoptosis.
M. Koch, H.-J. Mollenkopf, U. Klemm, and T. F. Meyer (2012)
PNAS 109, E1153-E1162
   Abstract »    Full Text »    PDF »
The emerging role of microRNA in regulation of endotoxin tolerance.
E. M. Quinn, J. Wang, and H. P. Redmond (2012)
J. Leukoc. Biol. 91, 721-727
   Abstract »    Full Text »    PDF »
A novel miR-155/miR-143 cascade controls glycolysis by regulating hexokinase 2 in breast cancer cells.
S. Jiang, L.-F. Zhang, H.-W. Zhang, S. Hu, M.-H. Lu, S. Liang, B. Li, Y. Li, D. Li, E.-D. Wang, et al. (2012)
EMBO J. 31, 1985-1998
   Abstract »    Full Text »    PDF »
Reprogramming Tumor-Associated Dendritic Cells In Vivo Using miRNA Mimetics Triggers Protective Immunity against Ovarian Cancer.
J. R. Cubillos-Ruiz, J. R. Baird, A. J. Tesone, M. R. Rutkowski, U. K. Scarlett, A. L. Camposeco-Jacobs, J. Anadon-Arnillas, N. M. Harwood, M. Korc, S. N. Fiering, et al. (2012)
Cancer Res. 72, 1683-1693
   Abstract »    Full Text »    PDF »
Non-cardiomyocyte microRNAs in heart failure.
A. J. Tijsen, Y. M. Pinto, and E. E. Creemers (2012)
Cardiovasc Res 93, 573-582
   Abstract »    Full Text »    PDF »
miR-30 Family Members Negatively Regulate Osteoblast Differentiation.
T. Wu, H. Zhou, Y. Hong, J. Li, X. Jiang, and H. Huang (2012)
J. Biol. Chem. 287, 7503-7511
   Abstract »    Full Text »    PDF »
Microbiota Downregulates Dendritic Cell Expression of miR-10a, Which Targets IL-12/IL-23p40.
X. Xue, T. Feng, S. Yao, K. J. Wolf, C.-G. Liu, X. Liu, C. O. Elson, and Y. Cong (2011)
J. Immunol. 187, 5879-5886
   Abstract »    Full Text »    PDF »
Integrative Deep Sequencing of the Mouse Lung Transcriptome Reveals Differential Expression of Diverse Classes of Small RNAs in Response to Respiratory Virus Infection.
X. Peng, L. Gralinski, M. T. Ferris, M. B. Frieman, M. J. Thomas, S. Proll, M. J. Korth, J. R. Tisoncik, M. Heise, S. Luo, et al. (2011)
mBio 2, e00198-11
   Abstract »    Full Text »    PDF »
MicroRNA-155 Promotes Resolution of Hypoxia-Inducible Factor 1{alpha} Activity during Prolonged Hypoxia.
U. Bruning, L. Cerone, Z. Neufeld, S. F. Fitzpatrick, A. Cheong, C. C. Scholz, D. A. Simpson, M. O. Leonard, M. M. Tambuwala, E. P. Cummins, et al. (2011)
Mol. Cell. Biol. 31, 4087-4096
   Abstract »    Full Text »    PDF »
MicroRNA-155 Is Essential for the T Cell-Mediated Control of Helicobacter pylori Infection and for the Induction of Chronic Gastritis and Colitis.
M. Oertli, D. B. Engler, E. Kohler, M. Koch, T. F. Meyer, and A. Muller (2011)
J. Immunol. 187, 3578-3586
   Abstract »    Full Text »    PDF »
MicroRNA function in myeloid biology.
R. M. O'Connell, J. L. Zhao, and D. S. Rao (2011)
Blood 118, 2960-2969
   Abstract »    Full Text »    PDF »
Silencing MicroRNA-155 Ameliorates Experimental Autoimmune Encephalomyelitis.
G. Murugaiyan, V. Beynon, A. Mittal, N. Joller, and H. L. Weiner (2011)
J. Immunol. 187, 2213-2221
   Abstract »    Full Text »    PDF »
Oncogenic IRFs Provide a Survival Advantage for Epstein-Barr Virus- or Human T-Cell Leukemia Virus Type 1-Transformed Cells through Induction of BIC Expression.
L. Wang, N. L. Toomey, L. A. Diaz, G. Walker, J. C. Ramos, G. N. Barber, and S. Ning (2011)
J. Virol. 85, 8328-8337
   Abstract »    Full Text »    PDF »
MicroRNAs regulating oxidative stress and inflammation in relation to obesity and atherosclerosis.
M. Hulsmans, D. De Keyzer, and P. Holvoet (2011)
FASEB J 25, 2515-2527
   Abstract »    Full Text »    PDF »
MicroRNA Expression Profiles of Human Blood Monocyte-derived Dendritic Cells and Macrophages Reveal miR-511 as Putative Positive Regulator of Toll-like Receptor 4.
L. Tserel, T. Runnel, K. Kisand, M. Pihlap, L. Bakhoff, R. Kolde, H. Peterson, J. Vilo, P. Peterson, and A. Rebane (2011)
J. Biol. Chem. 286, 26487-26495
   Abstract »    Full Text »    PDF »
MicroRNAs in Development and Disease.
D. Sayed and M. Abdellatif (2011)
Physiol Rev 91, 827-887
   Abstract »    Full Text »    PDF »
Porphyromonas gingivalis Induction of MicroRNA-203 Expression Controls Suppressor of Cytokine Signaling 3 in Gingival Epithelial Cells.
C. E. Moffatt and R. J. Lamont (2011)
Infect. Immun. 79, 2632-2637
   Abstract »    Full Text »    PDF »
A trio of microRNAs that control Toll-like receptor signalling.
S. R. Quinn and L. A. O'Neill (2011)
Int. Immunol. 23, 421-425
   Abstract »    Full Text »    PDF »
MicroRNA-155 is involved in the remodelling of human-trophoblast-derived HTR-8/SVneo cells induced by lipopolysaccharides.
Y. Dai, Z. Diao, H. Sun, R. Li, Z. Qiu, and Y. Hu (2011)
Hum. Reprod. 26, 1882-1891
   Abstract »    Full Text »    PDF »
miR-365, a Novel Negative Regulator of Interleukin-6 Gene Expression, Is Cooperatively Regulated by Sp1 and NF-{kappa}B.
Z. Xu, S.-B. Xiao, P. Xu, Q. Xie, L. Cao, D. Wang, R. Luo, Y. Zhong, H.-C. Chen, and L.-R. Fang (2011)
J. Biol. Chem. 286, 21401-21412
   Abstract »    Full Text »    PDF »
Targeting of microRNA-142-3p in dendritic cells regulates endotoxin-induced mortality.
Y. Sun, S. Varambally, C. A. Maher, Q. Cao, P. Chockley, T. Toubai, C. Malter, E. Nieves, I. Tawara, Y. Wang, et al. (2011)
Blood 117, 6172-6183
   Abstract »    Full Text »    PDF »
MicroRNAs in NF-{kappa}B signaling.
X. Ma, L. E. Becker Buscaglia, J. R. Barker, and Y. Li (2011)
J Mol Cell Biol 3, 159-166
   Abstract »    Full Text »    PDF »
MiRNA in innate immune responses: novel players in wound inflammation.
S. Roy and C. K. Sen (2011)
Physiol Genomics 43, 557-565
   Abstract »    Full Text »    PDF »
Analysis of the host microRNA response to Salmonella uncovers the control of major cytokines by the let-7 family.
L. N. Schulte, A. Eulalio, H.-J. Mollenkopf, R. Reinhardt, and J. Vogel (2011)
EMBO J. 30, 1977-1989
   Abstract »    Full Text »    PDF »
miTALOS: Analyzing the tissue-specific regulation of signaling pathways by human and mouse microRNAs.
A. Kowarsch, M. Preusse, C. Marr, and F. J. Theis (2011)
RNA 17, 809-819
   Abstract »    Full Text »    PDF »
Species-specific microRNA roles elucidated following astrocyte activation.
E. Mor, Y. Cabilly, Y. Goldshmit, H. Zalts, S. Modai, L. Edry, O. Elroy-Stein, and N. Shomron (2011)
Nucleic Acids Res. 39, 3710-3723
   Abstract »    Full Text »    PDF »
Cholesterol regulation of receptor-interacting protein 140 via microRNA-33 in inflammatory cytokine production.
P.-C. Ho, K.-C. Chang, Y.-S. Chuang, and L.-N. Wei (2011)
FASEB J 25, 1758-1766
   Abstract »    Full Text »    PDF »
Mutator activity induced by microRNA-155 (miR-155) links inflammation and cancer.
E. Tili, J.-J. Michaille, D. Wernicke, H. Alder, S. Costinean, S. Volinia, and C. M. Croce (2011)
PNAS 108, 4908-4913
   Abstract »    Full Text »    PDF »
Silencing microRNA by interfering nanoparticles in mice.
J. Su, H. Baigude, J. McCarroll, and T. M. Rana (2011)
Nucleic Acids Res. 39, e38
   Abstract »    Full Text »    PDF »
Dynamic Changes of microRNAs in the Eye during the Development of Experimental Autoimmune Uveoretinitis.
W. Ishida, K. Fukuda, T. Higuchi, M. Kajisako, S. Sakamoto, and A. Fukushima (2011)
Invest. Ophthalmol. Vis. Sci. 52, 611-617
   Abstract »    Full Text »    PDF »
NF-{kappa}B Down-regulates Expression of the B-lymphoma Marker CD10 through a miR-155/PU.1 Pathway.
R. C. Thompson, M. Herscovitch, I. Zhao, T. J. Ford, and T. D. Gilmore (2011)
J. Biol. Chem. 286, 1675-1682
   Abstract »    Full Text »    PDF »
The Interleukin 13 (IL-13) Pathway in Human Macrophages Is Modulated by MicroRNA-155 via Direct Targeting of Interleukin 13 Receptor {alpha}1 (IL13R{alpha}1).
R. T. Martinez-Nunez, F. Louafi, and T. Sanchez-Elsner (2011)
J. Biol. Chem. 286, 1786-1794
   Abstract »    Full Text »    PDF »
Up-regulation of MicroRNA-155 in Macrophages Contributes to Increased Tumor Necrosis Factor {alpha} (TNF{alpha}) Production via Increased mRNA Half-life in Alcoholic Liver Disease.
S. Bala, M. Marcos, K. Kodys, T. Csak, D. Catalano, P. Mandrekar, and G. Szabo (2011)
J. Biol. Chem. 286, 1436-1444
   Abstract »    Full Text »    PDF »
MicroRNA-155 Targets SMAD2 and Modulates the Response of Macrophages to Transforming Growth Factor-{beta}.
F. Louafi, R. T. Martinez-Nunez, and T. Sanchez-Elsner (2010)
J. Biol. Chem. 285, 41328-41336
   Abstract »    Full Text »    PDF »
miR-155 and its star-form partner miR-155* cooperatively regulate type I interferon production by human plasmacytoid dendritic cells.
H. Zhou, X. Huang, H. Cui, X. Luo, Y. Tang, S. Chen, L. Wu, and N. Shen (2010)
Blood 116, 5885-5894
   Abstract »    Full Text »    PDF »
MicroRNA-101 Targets MAPK Phosphatase-1 To Regulate the Activation of MAPKs in Macrophages.
Q.-Y. Zhu, Q. Liu, J.-X. Chen, K. Lan, and B.-X. Ge (2010)
J. Immunol. 185, 7435-7442
   Abstract »    Full Text »    PDF »
MicroRNA-148/152 Impair Innate Response and Antigen Presentation of TLR-Triggered Dendritic Cells by Targeting CaMKII{alpha}.
X. Liu, Z. Zhan, L. Xu, F. Ma, D. Li, Z. Guo, N. Li, and X. Cao (2010)
J. Immunol. 185, 7244-7251
   Abstract »    Full Text »    PDF »
Inducible microRNA-155 Feedback Promotes Type I IFN Signaling in Antiviral Innate Immunity by Targeting Suppressor of Cytokine Signaling 1.
P. Wang, J. Hou, L. Lin, C. Wang, X. Liu, D. Li, F. Ma, Z. Wang, and X. Cao (2010)
J. Immunol. 185, 6226-6233
   Abstract »    Full Text »    PDF »
Noncanonical cytoplasmic processing of viral microRNAs.
J. S. Shapiro, A. Varble, A. M. Pham, and B. R. tenOever (2010)
RNA 16, 2068-2074
   Abstract »    Full Text »    PDF »
Characterization of the Alpha Interferon-Induced Postentry Block to HIV-1 Infection in Primary Human Macrophages and T Cells.
C. Goujon and M. H. Malim (2010)
J. Virol. 84, 9254-9266
   Abstract »    Full Text »    PDF »
miRNA-based mechanism for the commitment of multipotent progenitors to a single cellular fate.
M. Mann, O. Barad, R. Agami, B. Geiger, and E. Hornstein (2010)
PNAS 107, 15804-15809
   Abstract »    Full Text »    PDF »
Circulating MicroRNAs As Potential Biomarkers of Coronary Artery Disease: A Promise to Be Fulfilled?.
R. Contu, M. V. G. Latronico, and G. Condorelli (2010)
Circ. Res. 107, 573-574
   Full Text »    PDF »
Resveratrol decreases the levels of miR-155 by upregulating miR-663, a microRNA targeting JunB and JunD.
E. Tili, J.-J. Michaille, B. Adair, H. Alder, E. Limagne, C. Taccioli, M. Ferracin, D. Delmas, N. Latruffe, and C. M. Croce (2010)
Carcinogenesis 31, 1561-1566
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882