Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 105 (17): 6392-6397

Copyright © 2008 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / MEDICAL SCIENCES

Notch signaling mediates hypoxia-induced tumor cell migration and invasion

Cecilia Sahlgren*, Maria V. Gustafsson, Shaobo Jin, Lorenz Poellinger, and Urban Lendahl{dagger}

Department of Cell and Molecular Biology, Medical Nobel Institute, Karolinska Institutet, SE-171 77 Stockholm, Sweden

Communicated by Tomas Hokfelt, Karolinska Institutet, Stockholm, Sweden, March 3, 2008

Received for publication November 14, 2007.

Abstract: Tumor hypoxia is linked to increased metastatic potential, but the molecular mechanisms coupling hypoxia to metastasis are poorly understood. Here, we show that Notch signaling is required to convert the hypoxic stimulus into epithelial–mesenchymal transition (EMT), increased motility, and invasiveness. Inhibition of Notch signaling abrogated hypoxia-induced EMT and invasion, and, conversely, an activated form of Notch could substitute for hypoxia to induce these processes. Notch signaling deploys two distinct mechanisms that act in synergy to control the expression of Snail-1, a critical regulator of EMT. First, Notch directly up-regulated Snail-1 expression by recruitment of the Notch intracellular domain to the Snail-1 promoter, and second, Notch potentiated hypoxia-inducible factor 1{alpha} (HIF-1{alpha}) recruitment to the lysyl oxidase (LOX) promoter and elevated the hypoxia-induced up-regulation of LOX, which stabilizes the Snail-1 protein. In sum, these data demonstrate a complex integration of the hypoxia and Notch signaling pathways in regulation of EMT and open up perspectives for pharmacological intervention with hypoxiainduced EMT and cell invasiveness in tumors.

Key Words: E-cadherin • lysyl oxidase • Snail


Author contributions: C.S., L.P., and U.L. designed research; C.S., M.V.G., and S.J. performed research; C.S., M.V.G., S.J., L.P., and U.L. analyzed data; and C.S., L.P., and U.L. wrote the paper.

*Present address: Department of Biology, Åbo Akademi University, BioCity, FIN-20520, Turku, Finland.

The authors declare no conflict of interest.

This article contains supporting information online at www.pnas.org/cgi/content/full/0802047105/DCSupplemental.

{dagger}To whom correspondence should be addressed. E-mail: urban.lendahl{at}ki.se

© 2008 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Notch signaling in the differentiation of MEE cells from the developing mouse palate.
Y. Zhang, J. Chai, Y. Qiu, M. Zhang, L. Zhang, and J. Yu (2014)
Acta Biochim Biophys Sin 46, 338-341
   Full Text »    PDF »
A disintegrin and metalloproteinase 12 (ADAM12) localizes to invasive trophoblast, promotes cell invasion and directs column outgrowth in early placental development.
M. Aghababaei, S. Perdu, K. Irvine, and A. G. Beristain (2014)
Mol. Hum. Reprod. 20, 235-249
   Abstract »    Full Text »    PDF »
The Cytoplasmic Extension of the Integrin {beta}6 Subunit Regulates Epithelial-to-Mesenchymal Transition.
C. LEE, C. LEE, S. LEE, A. SIU, and D. M. RAMOS (2014)
Anticancer Res 34, 659-664
   Abstract »    Full Text »    PDF »
Rhamnetin and Cirsiliol Induce Radiosensitization and Inhibition of Epithelial-Mesenchymal Transition (EMT) by miR-34a-mediated Suppression of Notch-1 Expression in Non-small Cell Lung Cancer Cell Lines.
J. Kang, E. Kim, W. Kim, K. M. Seong, H. Youn, J. W. Kim, J. Kim, and B. Youn (2013)
J. Biol. Chem. 288, 27343-27357
   Abstract »    Full Text »    PDF »
PIASy mediates hypoxia-induced SIRT1 transcriptional repression and epithelial-to-mesenchymal transition in ovarian cancer cells.
L. Sun, H. Li, J. Chen, Y. Iwasaki, T. Kubota, M. Matsuoka, A. Shen, Q. Chen, and Y. Xu (2013)
J. Cell Sci. 126, 3939-3947
   Abstract »    Full Text »    PDF »
HIF expression and the role of hypoxic microenvironments within primary tumours as protective sites driving cancer stem cell renewal and metastatic progression.
B. Philip, K. Ito, R. Moreno-Sanchez, and S. J. Ralph (2013)
Carcinogenesis 34, 1699-1707
   Abstract »    Full Text »    PDF »
A SUMOylation-Dependent Pathway Regulates SIRT1 Transcription and Lung Cancer Metastasis.
L. Sun, H. Li, J. Chen, V. Dehennaut, Y. Zhao, Y. Yang, Y. Iwasaki, B. Kahn-Perles, D. Leprince, Q. Chen, et al. (2013)
J Natl Cancer Inst 105, 887-898
   Abstract »    Full Text »    PDF »
Hypoxia-induced invadopodia formation: a role for {beta}-PIX.
N. F. Md Hashim, N. S. Nicholas, A. E. Dart, S. Kiriakidis, E. Paleolog, and C. M. Wells (2013)
Open Bio 3, 120159
   Abstract »    Full Text »    PDF »
Recombinant adeno-associated virus-mediated transfer of shRNA against Notch3 ameliorates hepatic fibrosis in rats.
S.-P. Zheng, Y.-X. Chen, J.-L. Guo, D. Qi, S.-J. Zheng, S.-L. Zhang, and Z.-H. Weng (2013)
Experimental Biology and Medicine 238, 600-609
   Abstract »    Full Text »    PDF »
Wnt/{beta}-catenin signaling enhances hypoxia-induced epithelial-mesenchymal transition in hepatocellular carcinoma via crosstalk with hif-1{alpha} signaling.
Q. Zhang, X. Bai, W. Chen, T. Ma, Q. Hu, C. Liang, S. Xie, C. Chen, L. Hu, S. Xu, et al. (2013)
Carcinogenesis 34, 962-973
   Abstract »    Full Text »    PDF »
Notch increases the shedding of HB-EGF by ADAM12 to potentiate invadopodia formation in hypoxia.
B. Diaz, A. Yuen, S. Iizuka, S. Higashiyama, and S. A. Courtneidge (2013)
J. Cell Biol. 201, 279-292
   Abstract »    Full Text »    PDF »
Hypoxia-Response Element (HRE)-Directed Transcriptional Regulation of the Rat Lysyl Oxidase Gene in Response to Cobalt and Cadmium.
S. Gao, J. Zhou, Y. Zhao, P. Toselli, and W. Li (2013)
Toxicol. Sci. 132, 379-389
   Abstract »    Full Text »    PDF »
Estrogen receptor {beta} sustains epithelial differentiation by regulating prolyl hydroxylase 2 transcription.
P. Mak, C. Chang, B. Pursell, and A. M. Mercurio (2013)
PNAS 110, 4708-4713
   Abstract »    Full Text »    PDF »
Contrasting Hypoxic Effects on Breast Cancer Stem Cell Hierarchy Is Dependent on ER-{alpha} Status.
H. Harrison, L. Rogerson, H. J. Gregson, K. R. Brennan, R. B. Clarke, and G. Landberg (2013)
Cancer Res. 73, 1420-1433
   Abstract »    Full Text »    PDF »
Evidence of functional cross talk between the Notch and NF-{kappa}B pathways in nonneoplastic hyperproliferating colonic epithelium.
I. Ahmed, B. Roy, P. Chandrakesan, A. Venugopal, L. Xia, R. Jensen, S. Anant, and S. Umar (2013)
Am J Physiol Gastrointest Liver Physiol 304, G356-G370
   Abstract »    Full Text »    PDF »
Combining Notch inhibition with current therapies for breast cancer treatment.
K. Brennan and R. B. Clarke (2013)
Therapeutic Advances in Medical Oncology 5, 17-24
   Abstract »    PDF »
Hypoxia promotes satellite cell self-renewal and enhances the efficiency of myoblast transplantation.
W. Liu, Y. Wen, P. Bi, X. Lai, X. S. Liu, X. Liu, and S. Kuang (2012)
Development 139, 2857-2865
   Abstract »    Full Text »    PDF »
The updated biology of hypoxia-inducible factor.
S. N. Greer, J. L. Metcalf, Y. Wang, and M. Ohh (2012)
EMBO J. 31, 2448-2460
   Abstract »    Full Text »    PDF »
Gamma secretase inhibition promotes hypoxic necrosis in mouse pancreatic ductal adenocarcinoma.
N. Cook, K. K. Frese, T. E. Bapiro, M. A. Jacobetz, A. Gopinathan, J. L. Miller, S. S. Rao, T. Demuth, W. J. Howat, D. I. Jodrell, et al. (2012)
J. Exp. Med. 209, 437-444
   Abstract »    Full Text »    PDF »
Multimodality Approaches to Treat Hypoxic Non-Small Cell Lung Cancer (NSCLC) Microenvironment.
S. Liang, P. Galluzzo, A. Sobol, S. Skucha, B. Rambo, and M. Bocchetta (2012)
Genes & Cancer 3, 141-151
   Abstract »    Full Text »    PDF »
E-cadherin impairment increases cell survival through Notch-dependent upregulation of Bcl-2.
A. C. Ferreira, G. Suriano, N. Mendes, B. Gomes, X. Wen, F. Carneiro, R. Seruca, and J. C. Machado (2012)
Hum. Mol. Genet. 21, 334-343
   Abstract »    Full Text »    PDF »
Snail1 controls epithelial-mesenchymal lineage commitment in focal adhesion kinase-null embryonic cells.
X.-Y. Li, X. Zhou, R. G. Rowe, Y. Hu, D. D. Schlaepfer, D. Ilic, G. Dressler, A. Park, J.-L. Guan, and S. J. Weiss (2011)
J. Cell Biol. 195, 729-738
   Abstract »    Full Text »    PDF »
Hypo- and hyperactivated Notch signaling induce a glycolytic switch through distinct mechanisms.
S. K.- J. Landor, A. P. Mutvei, V. Mamaeva, S. Jin, M. Busk, R. Borra, T. J. Gronroos, P. Kronqvist, U. Lendahl, and C. M. Sahlgren (2011)
PNAS 108, 18814-18819
   Abstract »    Full Text »    PDF »
A p53/miRNA-34 axis regulates Snail1-dependent cancer cell epithelial-mesenchymal transition.
N. H. Kim, H. S. Kim, X.-Y. Li, I. Lee, H.-S. Choi, S. E. Kang, S. Y. Cha, J. K. Ryu, D. Yoon, E. R. Fearon, et al. (2011)
J. Cell Biol. 195, 417-433
   Abstract »    Full Text »    PDF »
Hypoxia-Dependent Inhibition of Tumor Cell Susceptibility to CTL-Mediated Lysis Involves NANOG Induction in Target Cells.
M. Hasmim, M. Z. Noman, J. Lauriol, H. Benlalam, A. Mallavialle, F. Rosselli, F. Mami-Chouaib, C. Alcaide-Loridan, and S. Chouaib (2011)
J. Immunol. 187, 4031-4039
   Abstract »    Full Text »    PDF »
Notch signaling: simplicity in design, versatility in function.
E. R. Andersson, R. Sandberg, and U. Lendahl (2011)
Development 138, 3593-3612
   Abstract »    Full Text »    PDF »
Notch Signaling in CD66+ Cells Drives the Progression of Human Cervical Cancers.
J. Bajaj, T. T. Maliekal, E. Vivien, C. Pattabiraman, S. Srivastava, H. Krishnamurthy, V. Giri, D. Subramanyam, and S. Krishna (2011)
Cancer Res. 71, 4888-4897
   Abstract »    Full Text »    PDF »
In neurons, activity-dependent association of dendritically transported mRNA transcripts with the transacting factor CBF-A is mediated by A2RE/RTS elements.
C. S. Raju, N. Fukuda, C. Lopez-Iglesias, C. Goritz, N. Visa, and P. Percipalle (2011)
Mol. Biol. Cell 22, 1864-1877
   Abstract »    Full Text »    PDF »
JAG2 Induction in Hypoxic Tumor Cells Alters Notch Signaling and Enhances Endothelial Cell Tube Formation.
A. Pietras, K. von Stedingk, D. Lindgren, S. Pahlman, and H. Axelson (2011)
Mol. Cancer Res. 9, 626-636
   Abstract »    Full Text »    PDF »
Hypoxia Predicts Aggressive Growth and Spontaneous Metastasis Formation from Orthotopically Grown Primary Xenografts of Human Pancreatic Cancer.
Q. Chang, I. Jurisica, T. Do, and D. W. Hedley (2011)
Cancer Res. 71, 3110-3120
   Abstract »    Full Text »    PDF »
The HIF-1-Inducible Lysyl Oxidase Activates HIF-1 via the Akt Pathway in a Positive Regulation Loop and Synergizes with HIF-1 in Promoting Tumor Cell Growth.
F. Pez, F. Dayan, J. Durivault, B. Kaniewski, G. Aimond, G. S. Le Provost, B. Deux, P. Clezardin, P. Sommer, J. Pouyssegur, et al. (2011)
Cancer Res. 71, 1647-1657
   Abstract »    Full Text »    PDF »
The ZEB1/miR-200 feedback loop controls Notch signalling in cancer cells.
S. Brabletz, K. Bajdak, S. Meidhof, U. Burk, G. Niedermann, E. Firat, U. Wellner, A. Dimmler, G. Faller, J. Schubert, et al. (2011)
EMBO J. 30, 770-782
   Abstract »    Full Text »    PDF »
Experimental selection of hypoxia-tolerant Drosophila melanogaster.
D. Zhou, N. Udpa, M. Gersten, D. W. Visk, A. Bashir, J. Xue, K. A. Frazer, J. W. Posakony, S. Subramaniam, V. Bafna, et al. (2011)
PNAS 108, 2349-2354
   Abstract »    Full Text »    PDF »
Mouse Snail Is a Target Gene for HIF.
D. Luo, J. Wang, J. Li, and M. Post (2011)
Mol. Cancer Res. 9, 234-245
   Abstract »    Full Text »    PDF »
Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-{beta}.
F. Guan, L. Schaffer, K. Handa, and S.-i. Hakomori (2010)
FASEB J 24, 4889-4903
   Abstract »    Full Text »    PDF »
Targeting Notch pathway induces growth inhibition and differentiation of neuroblastoma cells.
G. Ferrari-Toninelli, S. A. Bonini, D. Uberti, L. Buizza, P. Bettinsoli, P. L. Poliani, F. Facchetti, and M. Memo (2010)
Neuro Oncology 12, 1231-1243
   Abstract »    Full Text »    PDF »
Notch2 is required for progression of pancreatic intraepithelial neoplasia and development of pancreatic ductal adenocarcinoma.
P. K. Mazur, H. Einwachter, M. Lee, B. Sipos, H. Nakhai, R. Rad, U. Zimber-Strobl, L. J. Strobl, F. Radtke, G. Kloppel, et al. (2010)
PNAS 107, 13438-13443
   Abstract »    Full Text »    PDF »
Hypoxia stimulates CXCR4 signalling in ileal carcinoids.
Y. Arvidsson, A. Bergstrom, L. Arvidsson, E. Kristiansson, H. Ahlman, and O. Nilsson (2010)
Endocr. Relat. Cancer 17, 303-316
   Abstract »    Full Text »    PDF »
The Lysyl Oxidases LOX and LOXL2 Are Necessary and Sufficient to Repress E-cadherin in Hypoxia: INSIGHTS INTO CELLULAR TRANSFORMATION PROCESSES MEDIATED BY HIF-1.
R. Schietke, C. Warnecke, I. Wacker, J. Schodel, D. R. Mole, V. Campean, K. Amann, M. Goppelt-Struebe, J. Behrens, K.-U. Eckardt, et al. (2010)
J. Biol. Chem. 285, 6658-6669
   Abstract »    Full Text »    PDF »
The Hypoxia-controlled FBXL14 Ubiquitin Ligase Targets SNAIL1 for Proteasome Degradation.
R. Vinas-Castells, M. Beltran, G. Valls, I. Gomez, J. M. Garcia, B. Montserrat-Sentis, J. Baulida, F. Bonilla, A. G. de Herreros, and V. M. Diaz (2010)
J. Biol. Chem. 285, 3794-3805
   Abstract »    Full Text »    PDF »
Constitutively active endothelial Notch4 causes lung arteriovenous shunts in mice.
D. Miniati, E. B. Jelin, J. Ng, J. Wu, T. R. Carlson, X. Wu, M. R. Looney, and R. A. Wang (2010)
Am J Physiol Lung Cell Mol Physiol 298, L169-L177
   Abstract »    Full Text »    PDF »
Receptor Channel TRPC6 Is a Key Mediator of Notch-Driven Glioblastoma Growth and Invasiveness.
S. Chigurupati, R. Venkataraman, D. Barrera, A. Naganathan, M. Madan, L. Paul, J. V. Pattisapu, G. A. Kyriazis, K. Sugaya, S. Bushnev, et al. (2010)
Cancer Res. 70, 418-427
   Abstract »    Full Text »    PDF »
Effect of Notch activation on the regenerative response to acute renal failure.
S. Gupta, S. Li, Md. J. Abedin, L. Wang, E. Schneider, B. Najafian, and M. Rosenberg (2010)
Am J Physiol Renal Physiol 298, F209-F215
   Abstract »    Full Text »    PDF »
Hypoxia-induced alveolar epithelial-mesenchymal transition requires mitochondrial ROS and hypoxia-inducible factor 1.
G. Zhou, L. A. Dada, M. Wu, A. Kelly, H. Trejo, Q. Zhou, J. Varga, and J. I. Sznajder (2009)
Am J Physiol Lung Cell Mol Physiol 297, L1120-L1130
   Abstract »    Full Text »    PDF »
Inflammation and EMT: an alliance towards organ fibrosis and cancer progression.
J. M. Lopez-Novoa and M. A. Nieto (2009)
EMBO Mol Med. 1, 303-314
   Abstract »    Full Text »    PDF »
Reversibility of Epithelial-Mesenchymal Transition (EMT) Induced in Breast Cancer Cells by Activation of Urokinase Receptor-dependent Cell Signaling.
M. Jo, R. D. Lester, V. Montel, B. Eastman, S. Takimoto, and S. L. Gonias (2009)
J. Biol. Chem. 284, 22825-22833
   Abstract »    Full Text »    PDF »
The Activated Notch1 Signal Pathway Is Associated with Gastric Cancer Progression through Cyclooxygenase-2.
T.-S. Yeh, C.-W. Wu, K.-W. Hsu, W.-J. Liao, M.-C. Yang, A. F.-Y. Li, A.-M. Wang, M.-L. Kuo, and C.-W. Chi (2009)
Cancer Res. 69, 5039-5048
   Abstract »    Full Text »    PDF »
Acquisition of Epithelial-Mesenchymal Transition Phenotype of Gemcitabine-Resistant Pancreatic Cancer Cells Is Linked with Activation of the Notch Signaling Pathway.
Z. Wang, Y. Li, D. Kong, S. Banerjee, A. Ahmad, A. S. Azmi, S. Ali, J. L. Abbruzzese, G. E. Gallick, and F. H. Sarkar (2009)
Cancer Res. 69, 2400-2407
   Abstract »    Full Text »    PDF »
Regulation of Renal Epithelial Tight Junctions by the von Hippel-Lindau Tumor Suppressor Gene Involves Occludin and Claudin 1 and Is Independent of E-Cadherin.
S. K. Harten, D. Shukla, R. Barod, A. Hergovich, M. S. Balda, K. Matter, M. A. Esteban, and P. H. Maxwell (2009)
Mol. Biol. Cell 20, 1089-1101
   Abstract »    Full Text »    PDF »
Tenascin-C Is a Novel RBPJ{kappa}-Induced Target Gene for Notch Signaling in Gliomas.
B. Sivasankaran, M. Degen, A. Ghaffari, M. E. Hegi, M.-F. Hamou, M.-C. S. Ionescu, C. Zweifel, M. Tolnay, M. Wasner, S. Mergenthaler, et al. (2009)
Cancer Res. 69, 458-465
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882