Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 105 (18): 6531-6536

Copyright © 2008 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / APPLIED BIOLOGICAL SCIENCES

Mice lacking angiotensin-converting enzyme have increased energy expenditure, with reduced fat mass and improved glucose clearance

Anura P. Jayasooriya*,{dagger}, Michael L. Mathai*,{ddagger},§, Lesley L. Walker*, Denovan P. Begg||,**, Derek A. Denton,{dagger}{dagger},{ddagger}{ddagger}, David Cameron-Smith**, Gary F. Egan*, Michael J. McKinley*,§§, Paula D. Rodger||, Andrew J. Sinclair**, John D. Wark¶¶, Harrison S. Weisinger||, Mark Jois||, and Richard S. Weisinger*,||

{dagger}{dagger}Dean's Ganglion, {ddagger}Centre for Neuroscience, §§Department of Physiology, and ¶¶Royal Melbourne Hospital, Faculty of Medicine, and *Howard Florey Institute, University of Melbourne, Victoria 3010, Australia; {dagger}Faculty of Veterinary Medicine, University of Peradeniya, Peradeniya 20400, Sri Lanka; §School of Biomedical and Health Sciences, Victoria University, Victoria 3021, Australia; ||School of Psychological Science, La Trobe University, Victoria 3086, Australia; **School of Exercise and Nutrition Sciences, Deakin University, Victoria 3125, Australia; and {ddagger}{ddagger}Baker Heart Research Institute, Prahran, Victoria 3004, Australia

Contributed by Derek A. Denton, March 17, 2008

Received for publication November 9, 2007.

Abstract: In addition to its role in the storage of fat, adipose tissue acts as an endocrine organ, and it contains a functional renin-angiotensin system (RAS). Angiotensin-converting enzyme (ACE) plays a key role in the RAS by converting angiotensin I to the bioactive peptide angiotensin II (Ang II). In the present study, the effect of targeting the RAS in body energy homeostasis and glucose tolerance was determined in homozygous mice in which the gene for ACE had been deleted (ACE–/–) and compared with wild-type littermates. Compared with wild-type littermates, ACE–/– mice had lower body weight and a lower proportion of body fat, especially in the abdomen. ACE–/– mice had greater fed-state total energy expenditure (TEE) and resting energy expenditure (REE) than wild-type littermates. There were pronounced increases in gene expression of enzymes related to lipolysis and fatty acid oxidation (lipoprotein lipase, carnitine palmitoyl transferase, long-chain acetyl CoA dehydrogenase) in the liver of ACE–/– mice and also lower plasma leptin. In contrast, no differences were detected in daily food intake, activity, fed-state plasma lipids, or proportion of fat excreted in fecal matter. In conclusion, the reduction in ACE activity is associated with a decreased accumulation of body fat, especially in abdominal fat depots. The decreased body fat in ACE–/– mice is independent of food intake and appears to be due to a high energy expenditure related to increased metabolism of fatty acids in the liver, with the additional effect of increased glucose tolerance.

Key Words: fatty acid metabolism • obesity • ACE knockout mice • glucose tolerance


Author contributions: A.P.J. and M.L.M. contributed equally to this work; M.L.M., A.J.S., and R.S.W. designed research; A.P.J., L.L.W., D.P.B., D.C.-S., and P.D.R. performed research; D.A.D., G.F.E., J.D.W., and R.S.W. contributed new reagents/analytic tools; H.S.W., M.J., and R.S.W. analyzed data; and A.P.J., M.L.M., D.P.B., and M.J.M. wrote the paper.

The authors declare no conflict of interest.

To whom correspondence may be addressed: E-mail: michael.mathai{at}florey.edu.au or ddenton{at}unimelb.edu.au

© 2008 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Oral Formulation of Angiotensin-(1-7) Improves Lipid Metabolism and Prevents High-Fat Diet-Induced Hepatic Steatosis and Inflammation in Mice.
J. D. Feltenberger, J. M. O. Andrade, A. Paraiso, L. O. Barros, A. B. M. Filho, R. D. M. Sinisterra, F. B. Sousa, A. L. S. Guimaraes, A. M. B. de Paula, M. J. Campagnole-Santos, et al. (2013)
Hypertension 62, 324-330
   Abstract »    Full Text »    PDF »
Angiotensin Receptor-Binding Protein ATRAP/Agtrap Inhibits Metabolic Dysfunction With Visceral Obesity.
A. Maeda, K. Tamura, H. Wakui, T. Dejima, M. Ohsawa, K. Azushima, T. Kanaoka, K. Uneda, M. Matsuda, A. Yamashita, et al. (2013)
JAHA 2, e000312
   Abstract »    Full Text »    PDF »
Angiotensin Type 1a Receptors in the Paraventricular Nucleus of the Hypothalamus Protect against Diet-Induced Obesity.
A. D. de Kloet, D. Pati, L. Wang, H. Hiller, C. Sumners, C. J. Frazier, R. J. Seeley, J. P. Herman, S. C. Woods, and E. G. Krause (2013)
J. Neurosci. 33, 4825-4833
   Abstract »    Full Text »    PDF »
Angiotensin-converting enzyme 2, angiotensin-(1-7) and Mas: new players of the renin-angiotensin system.
R. A. S. Santos, A. J. Ferreira, T. Verano-Braga, and M. Bader (2013)
J. Endocrinol. 216, R1-R17
   Abstract »    Full Text »    PDF »
Possible mechanism of the cardio-renal protective effects of AVE-0991, a non-peptide Mas-receptor agonist, in diabetic rats.
K. Singh, K. Sharma, M. Singh, and P. Sharma (2012)
Journal of Renin-Angiotensin-Aldosterone System 13, 334-340
   Abstract »    Full Text »    PDF »
A brain leptin-renin angiotensin system interaction in the regulation of sympathetic nerve activity.
A. M. Hilzendeger, D. A. Morgan, L. Brooks, D. Dellsperger, X. Liu, J. L. Grobe, K. Rahmouni, C. D. Sigmund, and A. L. Mark (2012)
Am J Physiol Heart Circ Physiol 303, H197-H206
   Abstract »    Full Text »    PDF »
Divergent mechanism regulating fluid intake and metabolism by the brain renin-angiotensin system.
C. D. Sigmund (2012)
Am J Physiol Regulatory Integrative Comp Physiol 302, R313-R320
   Abstract »    Full Text »    PDF »
Angiotensin II Type 1 Receptor Signaling Regulates Feeding Behavior through Anorexigenic Corticotropin-releasing Hormone in Hypothalamus.
R. Yamamoto, H. Akazawa, H. Fujihara, Y. Ozasa, N. Yasuda, K. Ito, Y. Kudo, Y. Qin, Y. Ueta, and I. Komuro (2011)
J. Biol. Chem. 286, 21458-21465
   Abstract »    Full Text »    PDF »
Beneficial effects of angiotensin (1-7) in diabetic rats with cardiomyopathy.
K. Singh, T. Singh, and P. L. Sharma (2011)
Therapeutic Advances in Cardiovascular Disease 5, 159-167
   Abstract »    PDF »
Angiotensinergic Signaling in the Brain Mediates Metabolic Effects of Deoxycorticosterone (DOCA)-Salt in C57 Mice.
J. L. Grobe, B. A. Buehrer, A. M. Hilzendeger, X. Liu, D. R. Davis, D. Xu, and C. D. Sigmund (2011)
Hypertension 57, 600-607
   Abstract »    Full Text »    PDF »
Loss of Angiotensin-converting enzyme-related (ACER) peptidase disrupts night-time sleep in adult Drosophila melanogaster.
A. Carhan, K. Tang, C. A. Shirras, A. D. Shirras, and R. E. Isaac (2011)
J. Exp. Biol. 214, 680-686
   Abstract »    Full Text »    PDF »
Angiotensin II blockade: a strategy to slow ageing by protecting mitochondria?.
E. M. V. de Cavanagh, F. Inserra, and L. Ferder (2011)
Cardiovasc Res 89, 31-40
   Abstract »    Full Text »    PDF »
Angiotensin-converting Enzyme Inhibition Down-regulates the Pro-atherogenic Chemokine Receptor 9 (CCR9)-Chemokine Ligand 25 (CCL25) Axis.
J. Abd Alla, A. Langer, S. S. Elzahwy, G. Arman-Kalcek, T. Streichert, and U. Quitterer (2010)
J. Biol. Chem. 285, 23496-23505
   Abstract »    Full Text »    PDF »
Improved Lipid and Glucose Metabolism in Transgenic Rats With Increased Circulating Angiotensin-(1-7).
S. H. S. Santos, J. F. Braga, E. G. Mario, L. C. J. Porto, M. d. G. Rodrigues-Machado, A. Murari, L. M. Botion, N. Alenina, M. Bader, and R. A. S. Santos (2010)
Arterioscler Thromb Vasc Biol 30, 953-961
   Abstract »    Full Text »    PDF »
Regulated renin release from 3T3-L1 adipocytes.
J. D. Fowler, N. D. Johnson, T. A. Haroldson, J. A. Brintnall, J. E. Herrera, S. A. Katz, and D. A. Bernlohr (2009)
Am J Physiol Endocrinol Metab 296, E1383-E1391
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882