Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 105 (18): 6626-6631

Copyright © 2008 by the National Academy of Sciences.


Rapid signal transduction in living cells is a unique feature of mechanotransduction

Sungsoo Na*, Olivier Collin*, Farhan Chowdhury*, Bernard Tay*, Mingxing Ouyang{dagger}, Yingxiao Wang{dagger}, and Ning Wang*,{ddagger}

Departments of *Mechanical Science and Engineering and {dagger}Bioengineering, University of Illinois at Urbana–Champaign, Urbana, IL 61801

Edited by Thomas P. Stossel, Harvard Medical School, Boston, MA, and approved March 12, 2008

Received for publication December 12, 2007.

Abstract: It is widely postulated that mechanotransduction is initiated at the local force–membrane interface by inducing local conformational changes of proteins, similar to soluble ligand-induced signal transduction. However, all published reports are limited in time scale to address this fundamental issue. Using a FRET-based cytosolic Src reporter in a living cell, we quantified changes of Src activities as a local stress via activated integrins was applied. The stress induced rapid (<0.3 s) activation of Src at remote cytoplasmic sites, which depends on the cytoskeletal prestress. In contrast, there was no Src activation within 12 s of soluble epidermal growth factor (EGF) stimulation. A 1.8-Pa stress over a focal adhesion activated Src to the same extent as 0.4 ng/ml EGF at long times (minutes), and the energy levels for mechanical stimulation and chemical stimulation were comparable. The effect of both stress and EGF was less than additive. Nanometer-scale cytoskeletal deformation analyses revealed that the strong activation sites of Src by stress colocalized with large deformation sites of microtubules, suggesting that microtubules are essential structures for transmitting stresses to activate cytoplasmic proteins. These results demonstrate that rapid signal transduction via the prestressed cytoskeleton is a unique feature of mechanotransduction.

Key Words: cytoskeleton • growth factor • mechanical force • prestress • microtubule

Author contributions: S.N. and N.W. designed research; S.N., O.C., F.C., and M.O. performed research; S.N. and B.T. analyzed data; and S.N., Y.W., and N.W. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

{ddagger}To whom correspondence should be addressed. E-mail: nwangrw{at}

© 2008 by The National Academy of Sciences of the USA

Mechanosensing through focal adhesion-anchored intermediate filaments.
M. Gregor, S. Osmanagic-Myers, G. Burgstaller, M. Wolfram, I. Fischer, G. Walko, G. P. Resch, A. Jorgl, H. Herrmann, and G. Wiche (2014)
FASEB J 28, 715-729
   Abstract »    Full Text »    PDF »
Physical Biology in Cancer. 4. Physical cues guide tumor cell adhesion and migration.
K. M. Stroka and K. Konstantopoulos (2014)
Am J Physiol Cell Physiol 306, C98-C109
   Abstract »    Full Text »    PDF »
Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.
J. Seong, A. Tajik, J. Sun, J.-L. Guan, M. J. Humphries, S. E. Craig, A. Shekaran, A. J. Garcia, S. Lu, M. Z. Lin, et al. (2013)
PNAS 110, 19372-19377
   Abstract »    Full Text »    PDF »
Vinculin tension distributions of individual stress fibers within cell-matrix adhesions.
C.-W. Chang and S. Kumar (2013)
J. Cell Sci. 126, 3021-3030
   Abstract »    Full Text »    PDF »
Molecular Biology of Atherosclerosis.
P. N. Hopkins (2013)
Physiol Rev 93, 1317-1542
   Abstract »    Full Text »    PDF »
B Cell Activation Is Regulated by the Stiffness Properties of the Substrate Presenting the Antigens.
Z. Wan, S. Zhang, Y. Fan, K. Liu, F. Du, A. M. Davey, H. Zhang, W. Han, C. Xiong, and W. Liu (2013)
J. Immunol. 190, 4661-4675
   Abstract »    Full Text »    PDF »
Remanent cell traction force in renal vascular smooth muscle cells induced by integrin-mediated mechanotransduction.
L. Balasubramanian, C.-M. Lo, J. S. K. Sham, and K.-P. Yip (2013)
Am J Physiol Cell Physiol 304, C382-C391
   Abstract »    Full Text »    PDF »
Finding the weakest link - exploring integrin-mediated mechanical molecular pathways.
P. Roca-Cusachs, T. Iskratsch, and M. P. Sheetz (2012)
J. Cell Sci. 125, 3025-3038
   Abstract »    Full Text »    PDF »
Molecular force transduction by ion channels - diversity and unifying principles.
S. Sukharev and F. Sachs (2012)
J. Cell Sci. 125, 3075-3083
   Abstract »    Full Text »    PDF »
Src, p130Cas, and Mechanotransduction in Cancer Cells.
H. Matsui, I. Harada, and Y. Sawada (2012)
Genes & Cancer 3, 394-401
   Abstract »    Full Text »    PDF »
Orientation-based FRET sensor for real-time imaging of cellular forces.
F. Meng and F. Sachs (2012)
J. Cell Sci. 125, 743-750
   Abstract »    Full Text »    PDF »
Early integrin binding to Arg-Gly-Asp peptide activates actin polymerization and contractile movement that stimulates outward translocation.
C.-h. Yu, J. B. K. Law, M. Suryana, H. Y. Low, and M. P. Sheetz (2011)
PNAS 108, 20585-20590
   Abstract »    Full Text »    PDF »
Nesprin-3 regulates endothelial cell morphology, perinuclear cytoskeletal architecture, and flow-induced polarization.
J. T. Morgan, E. R. Pfeiffer, T. L. Thirkill, P. Kumar, G. Peng, H. N. Fridolfsson, G. C. Douglas, D. A. Starr, and A. I. Barakat (2011)
Mol. Biol. Cell 22, 4324-4334
   Abstract »    Full Text »    PDF »
Real-time observation of flow-induced cytoskeletal stress in living cells.
J. Rahimzadeh, F. Meng, F. Sachs, J. Wang, D. Verma, and S. Z. Hua (2011)
Am J Physiol Cell Physiol 301, C646-C652
   Abstract »    Full Text »    PDF »
Integrin activation and internalization on soft ECM as a mechanism of induction of stem cell differentiation by ECM elasticity.
J. Du, X. Chen, X. Liang, G. Zhang, J. Xu, L. He, Q. Zhan, X.-Q. Feng, S. Chien, and C. Yang (2011)
PNAS 108, 9466-9471
   Abstract »    Full Text »    PDF »
Imaging Techniques for Measuring the Materials Properties of Cells.
K. E. Kasza, D. Vader, S. Koster, N. Wang, and D. A. Weitz (2011)
Cold Spring Harb Protoc 2011, pdb.top107
   Abstract »    Full Text »    PDF »
Visualizing dynamic cytoplasmic forces with a compliance-matched FRET sensor.
F. Meng and F. Sachs (2011)
J. Cell Sci. 124, 261-269
   Abstract »    Full Text »    PDF »
Mechanisms of mechanical signaling in development and disease.
P. A. Janmey and R. T. Miller (2011)
J. Cell Sci. 124, 9-18
   Abstract »    Full Text »    PDF »
Real-time single-cell response to stiffness.
D. Mitrossilis, J. Fouchard, D. Pereira, F. Postic, A. Richert, M. Saint-Jean, and A. Asnacios (2010)
PNAS 107, 16518-16523
   Abstract »    Full Text »    PDF »
Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis.
E. Papusheva and C.-P. Heisenberg (2010)
EMBO J. 29, 2753-2768
   Abstract »    Full Text »    PDF »
Live cell imaging of mechanotransduction.
B. Liu, T. J. Kim, and Y. Wang (2010)
J R Soc Interface 7, S365-S375
   Abstract »    Full Text »    PDF »
Mechanical control of tissue and organ development.
T. Mammoto and D. E. Ingber (2010)
Development 137, 1407-1420
   Abstract »    Full Text »    PDF »
Stretch-Activated Ion Channels: What Are They?.
F. Sachs (2010)
Physiology 25, 50-56
   Abstract »    Full Text »    PDF »
Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in?.
A. Buxboim, I. L. Ivanovska, and D. E. Discher (2010)
J. Cell Sci. 123, 297-308
   Abstract »    Full Text »    PDF »
Plectin contributes to mechanical properties of living cells.
S. Na, F. Chowdhury, B. Tay, M. Ouyang, M. Gregor, Y. Wang, G. Wiche, and N. Wang (2009)
Am J Physiol Cell Physiol 296, C868-C877
   Abstract »    Full Text »    PDF »
Mechanically Activated Integrin Switch Controls {alpha}5{beta}1 Function.
J. C. Friedland, M. H. Lee, and D. Boettiger (2009)
Science 323, 642-644
   Abstract »    Full Text »    PDF »
Application of Fluorescence Resonance Energy Transfer and Magnetic Twisting Cytometry to Quantify Mechanochemical Signaling Activities in a Living Cell.
S. Na and N. Wang (2008)
Science Signaling 1, pl1
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882