Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 105 (20): 7165-7170

Copyright © 2008 by the National Academy of Sciences.


Signal processing by the HOG MAP kinase pathway

Pascal Hersen{dagger},{ddagger}, Megan N. McClean{dagger},§, L. Mahadevan§, and Sharad Ramanathan{dagger},||

{dagger}FAS Center for Systems Biology and §School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138; {ddagger}Laboratoire Matière et Systèmes Complexes, Centre National de la Recherche Scientifique and Université Paris Diderot, 75205 Paris Cedex 13, France; and Bell Laboratories, Alcatel–Lucent, Murray Hill, NJ 07974

Edited by Charles F. Stevens, Salk Institute for Biological Studies, La Jolla, CA, and approved February 29, 2008

Received for publication November 13, 2007.

Abstract: Signaling pathways relay information about changes in the external environment so that cells can respond appropriately. How much information a pathway can carry depends on its bandwidth. We designed a microfluidic device to reliably change the environment of single cells over a range of frequencies. Using this device, we measured the bandwidth of the Saccharomyces cerevisiae signaling pathway that responds to high osmolarity. This prototypical pathway, the HOG pathway, is shown to act as a low-pass filter, integrating the signal when it changes rapidly and following it faithfully when it changes more slowly. We study the dependence of the pathway's bandwidth on its architecture. We measure previously unknown bounds on all of the in vivo reaction rates acting in this pathway. We find that the two-component Ssk1 branch of this pathway is capable of fast signal integration, whereas the kinase Ste11 branch is not. Our experimental techniques can be applied to other signaling pathways, allowing the measurement of their in vivo kinetics and the quantification of their information capacity.

Key Words: bandwidth • HOG pathway • microfluidics • signal transduction

Freely available online through the PNAS open access option.

Author contributions: P.H. and M.N.M. contributed equally to this work; P.H., M.N.M., L.M., and S.R. designed research; P.H. and M.N.M. performed research; P.H. and M.N.M. contributed new reagents/analytic tools; P.H., M.N.M., and S.R. analyzed data; and P.H., M.N.M., and S.R. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

||To whom correspondence should be addressed at: 206 Bauer Center, Harvard University, 7 Divinity Avenue, Cambridge, MA 02138. E-mail: sharad{at}

© 2008 by The National Academy of Sciences of the USA

Strategies for cellular decision-making.
T. J. Perkins and P. S. Swain (2014)
Mol Syst Biol 5, 326
   Abstract »    Full Text »    PDF »
A modular gradient-sensing network for chemotaxis in Escherichia coli revealed by responses to time-varying stimuli.
T. S. Shimizu, Y. Tu, and H. C. Berg (2014)
Mol Syst Biol 6, 382
   Abstract »    Full Text »    PDF »
Modelling reveals novel roles of two parallel signalling pathways and homeostatic feedbacks in yeast.
J. Schaber, R. Baltanas, A. Bush, E. Klipp, and A. Colman-Lerner (2014)
Mol Syst Biol 8, 622
   Abstract »    Full Text »    PDF »
Promoter decoding of transcription factor dynamics involves a trade-off between noise and control of gene expression.
A. S. Hansen and E. K. O{middle dot}Shea (2014)
Mol Syst Biol 9, 704
   Abstract »    Full Text »    PDF »
Microfluidic Platforms for Single-Cell Protein Analysis.
Y. Liu and A. K. Singh (2013)
Journal of Laboratory Automation 18, 446-454
   Abstract »    Full Text »    PDF »
Adaptive molecular networks controlling chemotactic migration: dynamic inputs and selection of the network architecture.
H. Chang and A. Levchenko (2013)
Phil Trans R Soc B 368, 20130117
   Abstract »    Full Text »    PDF »
Noise and interlocking signaling pathways promote distinct transcription factor dynamics in response to different stresses.
N. Petrenko, R. V. Chereji, M. N. McClean, A. V. Morozov, and J. R. Broach (2013)
Mol. Biol. Cell 24, 2045-2057
   Abstract »    Full Text »    PDF »
Severe osmotic compression triggers a slowdown of intracellular signaling, which can be explained by molecular crowding.
A. Miermont, F. Waharte, S. Hu, M. N. McClean, S. Bottani, S. Leon, and P. Hersen (2013)
PNAS 110, 5725-5730
   Abstract »    Full Text »    PDF »
Event timing at the single-cell level.
E. Yurkovsky and I. Nachman (2013)
Briefings in Functional Genomics 12, 90-98
   Abstract »    Full Text »    PDF »
Dimerization and Bifunctionality Confer Robustness to the Isocitrate Dehydrogenase Regulatory System in Escherichia coli.
J. P. Dexter and J. Gunawardena (2013)
J. Biol. Chem. 288, 5770-5778
   Abstract »    Full Text »    PDF »
Systematic Identification of Signal-Activated Stochastic Gene Regulation.
G. Neuert, B. Munsky, R. Z. Tan, L. Teytelman, M. Khammash, and A. van Oudenaarden (2013)
Science 339, 584-587
   Abstract »    Full Text »    PDF »
Synthetic gene expression perturbation systems with rapid, tunable, single-gene specificity in yeast.
R. S. McIsaac, B. L. Oakes, X. Wang, K. A. Dummit, D. Botstein, and M. B. Noyes (2013)
Nucleic Acids Res. 41, e57
   Abstract »    Full Text »    PDF »
Tunable Signal Processing Through Modular Control of Transcription Factor Translocation.
N. Hao, B. A. Budnik, J. Gunawardena, and E. K. O'Shea (2013)
Science 339, 460-464
   Abstract »    Full Text »    PDF »
Expression of Pseudomonas syringae type III effectors in yeast under stress conditions reveals that HopX1 attenuates activation of the high osmolarity glycerol MAP kinase pathway.
D. Salomon, E. Bosis, D. Dar, I. Nachman, and G. Sessa (2012)
Microbiology 158, 2859-2869
   Abstract »    Full Text »    PDF »
The Temporal Pattern of Stimulation Determines the Extent and Duration of MAPK Activation in a Caenorhabditis elegans Sensory Neuron.
T. Tomida, S. Oda, M. Takekawa, Y. Iino, and H. Saito (2012)
Science Signaling 5, ra76
   Abstract »    Full Text »    PDF »
Response to Hyperosmotic Stress.
H. Saito and F. Posas (2012)
Genetics 192, 289-318
   Abstract »    Full Text »    PDF »
Long-term model predictive control of gene expression at the population and single-cell levels.
J. Uhlendorf, A. Miermont, T. Delaveau, G. Charvin, F. Fages, S. Bottani, G. Batt, and P. Hersen (2012)
PNAS 109, 14271-14276
   Abstract »    Full Text »    PDF »
Diverse Sensitivity Thresholds in Dynamic Signaling Responses by Social Amoebae.
C. J. Wang, A. Bergmann, B. Lin, K. Kim, and A. Levchenko (2012)
Science Signaling 5, ra17
   Abstract »    Full Text »    PDF »
Load-Induced Modulation of Signal Transduction Networks.
P. Jiang, A. C. Ventura, E. D. Sontag, S. D. Merajver, A. J. Ninfa, and D. Del Vecchio (2011)
Science Signaling 4, ra67
   Abstract »    Full Text »    PDF »
Transient Activation of the HOG MAPK Pathway Regulates Bimodal Gene Expression.
S. Pelet, F. Rudolf, M. Nadal-Ribelles, E. de Nadal, F. Posas, and M. Peter (2011)
Science 332, 732-735
   Abstract »    Full Text »    PDF »
Decoupling of Receptor and Downstream Signals in the Akt Pathway by Its Low-Pass Filter Characteristics.
K. A. Fujita, Y. Toyoshima, S. Uda, Y.-i. Ozaki, H. Kubota, and S. Kuroda (2010)
Science Signaling 3, ra56
   Abstract »    Full Text »    PDF »
New Connections, New Components, Real Dynamics.
J. S. Bader (2009)
Science Signaling 2, pe48
   Abstract »    Full Text »    PDF »
The Signaling Mucins Msb2 and Hkr1 Differentially Regulate the Filamentation Mitogen-activated Protein Kinase Pathway and Contribute to a Multimodal Response.
A. Pitoniak, B. Birkaya, H. M. Dionne, N. Vadaie, and P. J. Cullen (2009)
Mol. Biol. Cell 20, 3101-3114
   Abstract »    Full Text »    PDF »
Dynamic Signaling in the Hog1 MAPK Pathway Relies on High Basal Signal Transduction.
J. Macia, S. Regot, T. Peeters, N. Conde, R. Sole, and F. Posas (2009)
Science Signaling 2, ra13
   Abstract »    Full Text »    PDF »
Dynamic analysis of MAPK signaling using a high-throughput microfluidic single-cell imaging platform.
R. J. Taylor, D. Falconnet, A. Niemisto, S. A. Ramsey, S. Prinz, I. Shmulevich, T. Galitski, and C. L. Hansen (2009)
PNAS 106, 3758-3763
   Abstract »    Full Text »    PDF »
Probing Pathways Periodically.
T. C. Elston (2008)
Science Signaling 1, pe47
   Abstract »    Full Text »    PDF »
Phosphorylated Ssk1 Prevents Unphosphorylated Ssk1 from Activating the Ssk2 Mitogen-Activated Protein Kinase Kinase Kinase in the Yeast High-Osmolarity Glycerol Osmoregulatory Pathway.
T. Horie, K. Tatebayashi, R. Yamada, and H. Saito (2008)
Mol. Cell. Biol. 28, 5172-5183
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882