Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 105 (4): 1226-1231

Copyright © 2008 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

High glucose induces adipogenic differentiation of muscle-derived stem cells

Paola Aguiari*, Sara Leo*, Barbara Zavan{dagger}, Vincenzo Vindigni{ddagger}, Alessandro Rimessi*, Katiuscia Bianchi*, Chiara Franzin§, Roberta Cortivo{dagger}, Marco Rossato§, Roberto Vettor§, Giovanni Abatangelo{dagger}, Tullio Pozzan,||, Paolo Pinton*, and Rosario Rizzuto*,||

*Department of Experimental and Diagnostic Medicine, Interdisciplinary Center for the Study of Inflammation, University of Ferrara, 44100 Ferrara, Italy; {dagger}Department of Histology, Microbiology and Medical Biotechnologies, University of Padua, 35122 Padua, Italy; {ddagger}Clinic of Plastic Surgery, University of Padua, 35122 Padua, Italy; §Endocrine-Metabolic Laboratory, Internal Medicine, Department of Medical and Surgical Sciences, University of Padua, 35122 Padua, Italy; and Department of Biomedical Sciences, CNR Institute of Neuroscience, and Venetian Institute of Molecular Medicine, University of Padua, 35122 Padua, Italy

Contributed by Tullio Pozzan, December 5, 2007

Received for publication September 14, 2007.

Abstract: Regeneration of mesenchymal tissues depends on a resident stem cell population, that in most cases remains elusive in terms of cellular identity and differentiation signals. We here show that primary cell cultures derived from adipose tissue or skeletal muscle differentiate into adipocytes when cultured in high glucose. High glucose induces ROS production and PKCβ activation. These two events appear crucial steps in this differentiation process that can be directly induced by oxidizing agents and inhibited by PKCβ siRNA silencing. The differentiated adipocytes, when implanted in vivo, form viable and vascularized adipose tissue. Overall, the data highlight a previously uncharacterized differentiation route triggered by high glucose that drives not only resident stem cells of the adipose tissue but also uncommitted precursors present in muscle cells to form adipose depots. This process may represent a feed-forward cycle between the regional increase in adiposity and insulin resistance that plays a key role in the pathogenesis of diabetes mellitus.

Key Words: adipocyte • hyperglycemia • PKC • ROS


Author contributions: P.A., S.L., and B.Z. contributed equally to this work; P.P. and R.R. designed research; P.A., S.L., B.Z., V.V., A.R., K.B., and C.F. performed research; P.A., S.L., B.Z., A.R., R.C., M.R., R.V., G.A., T.P., and P.P. analyzed data; and R.R. wrote the paper.

The authors declare no conflict of interest.

This article contains supporting information online at www.pnas.org/cgi/content/full/0711402105/DC1.

||To whom correspondence may be addressed. E-mail: tullio.pozzan{at}unipd.it or rzr{at}unife.it

© 2008 by The National Academy of Sciences of the USA


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The effect of nutritional status and muscle fiber type on myogenic satellite cell fate and apoptosis.
D. J. Powell, D. C. McFarland, A. J. Cowieson, W. I. Muir, and S. G. Velleman (2014)
Poultry Science 93, 163-173
   Abstract »    Full Text »    PDF »
Human skeletal muscle fibroblasts, but not myogenic cells, readily undergo adipogenic differentiation.
C. C. Agley, A. M. Rowlerson, C. P. Velloso, N. R. Lazarus, and S. D. R. Harridge (2013)
J. Cell Sci. 126, 5610-5625
   Abstract »    Full Text »    PDF »
Maternal Obesity Induces Epigenetic Modifications to Facilitate Zfp423 Expression and Enhance Adipogenic Differentiation in Fetal Mice.
Q.-Y. Yang, J.-F. Liang, C. J. Rogers, J.-X. Zhao, M.-J. Zhu, and M. Du (2013)
Diabetes 62, 3727-3735
   Abstract »    Full Text »    PDF »
A long journey to effective obesity treatments: is there light at the end of the tunnel?.
M. V. Dodson, S. Boudina, E. Albrecht, L. Bucci, M. F. Culver, S. Wei, W. G. Bergen, A. J. Amaral, N. Moustaid-Moussa, S. Poulos, et al. (2013)
Experimental Biology and Medicine 238, 491-501
   Abstract »    Full Text »    PDF »
Dose-dependent effects of vitamin D on transdifferentiation of skeletal muscle cells to adipose cells.
K. J. P. Ryan, Z. C. T. R. Daniel, L. J. L. Craggs, T. Parr, and J. M. Brameld (2013)
J. Endocrinol. 217, 45-58
   Abstract »    Full Text »    PDF »
Testosterone treatment improves metabolic syndrome-induced adipose tissue derangements.
E. Maneschi, A. Morelli, S. Filippi, I. Cellai, P. Comeglio, B. Mazzanti, T. Mello, A. Calcagno, E. Sarchielli, L. Vignozzi, et al. (2012)
J. Endocrinol. 215, 347-362
   Abstract »    Full Text »    PDF »
Abundance of TRPC6 protein in glomerular mesangial cells is decreased by ROS and PKC in diabetes.
S. Graham, Y. Gorin, H. E. Abboud, M. Ding, D. Y. Lee, H. Shi, Y. Ding, and R. Ma (2011)
Am J Physiol Cell Physiol 301, C304-C315
   Abstract »    Full Text »    PDF »
Maternal Obesity-Impaired Insulin Signaling in Sheep and Induced Lipid Accumulation and Fibrosis in Skeletal Muscle of Offspring.
X. Yan, Y. Huang, J.-X. Zhao, N. M. Long, A. B. Uthlaut, M.-J. Zhu, S. P. Ford, P. W. Nathanielsz, and M. Du (2011)
Biol Reprod 85, 172-178
   Abstract »    Full Text »    PDF »
T-cells and muscle just don't talk like they used to: Focus on "Age-related impairment of T cell-induced skeletal muscle precursor cell function".
T. J. Hawke (2011)
Am J Physiol Cell Physiol 300, C1223-C1225
   Full Text »    PDF »
Fetal programming of skeletal muscle development in ruminant animals.
M. Du, J. Tong, J. Zhao, K. R. Underwood, M. Zhu, S. P. Ford, and P. W. Nathanielsz (2010)
J Anim Sci 88, E51-E60
   Abstract »    Full Text »    PDF »
Globular Adiponectin as a Complete Mesoangioblast Regulator: Role in Proliferation, Survival, Motility, and Skeletal Muscle Differentiation.
T. Fiaschi, F. S. Tedesco, E. Giannoni, J. Diaz-Manera, M. Parri, G. Cossu, and P. Chiarugi (2010)
Mol. Biol. Cell 21, 848-859
   Abstract »    Full Text »    PDF »
Maternal Obesity, Inflammation, and Fetal Skeletal Muscle Development.
M. Du, X. Yan, J. F. Tong, J. Zhao, and M. J. Zhu (2010)
Biol Reprod 82, 4-12
   Abstract »    Full Text »    PDF »
The origin of intermuscular adipose tissue and its pathophysiological implications.
R. Vettor, G. Milan, C. Franzin, M. Sanna, P. De Coppi, R. Rizzuto, and G. Federspil (2009)
Am J Physiol Endocrinol Metab 297, E987-E998
   Abstract »    Full Text »    PDF »
Adipose Tissue-Derived Stem Cells: Characterization and Potential for Cardiovascular Repair.
R. Madonna, Y.-J. Geng, and R. De Caterina (2009)
Arterioscler Thromb Vasc Biol 29, 1723-1729
   Abstract »    Full Text »    PDF »
Adipose tissue function and dysfunction: organ cross talk and metabolic risk.
F. Giorgino (2009)
Am J Physiol Endocrinol Metab 297, E975-E976
   Full Text »    PDF »
Sarcoglycan Complex: IMPLICATIONS FOR METABOLIC DEFECTS IN MUSCULAR DYSTROPHIES.
S. Groh, H. Zong, M. M. Goddeeris, C. S. Lebakken, D. Venzke, J. E. Pessin, and K. P. Campbell (2009)
J. Biol. Chem. 284, 19178-19182
   Abstract »    Full Text »    PDF »
Science Signaling Podcast: 22 February 2008.
N. R. Gough and J. F. Foley (2008)
Science Signaling 1, pc2
   Abstract »    Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882