Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 106 (1): 280-285

Copyright © 2009 by the National Academy of Sciences.


Structurally diverse natural products that cause potassium leakage trigger multicellularity in Bacillus subtilis

Daniel Lópeza, Michael A. Fischbachb, Frances Chuc, Richard Losickc,1, and Roberto Koltera,1

aDepartment of Microbiology and Molecular Genetics and bDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115; and cDepartment of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138

Contributed by Richard Losick, November 4, 2008

Received for publication September 22, 2008.

Abstract: We report a previously undescribed quorum-sensing mechanism for triggering multicellularity in Bacillus subtilis. B. subtilis forms communities of cells known as biofilms in response to an unknown signal. We discovered that biofilm formation is stimulated by a variety of small molecules produced by bacteria—including the B. subtilis nonribosomal peptide surfactin—that share the ability to induce potassium leakage. Natural products that do not cause potassium leakage failed to induce multicellularity. Small-molecule-induced multicellularity was prevented by the addition of potassium, but not sodium or lithium. Evidence is presented that potassium leakage stimulates the activity of a membrane protein kinase, KinC, which governs the expression of genes involved in biofilm formation. We propose that KinC responds to lowered intracellular potassium concentration and that this is a quorum-sensing mechanism that enables B. subtilis to respond to related and unrelated bacteria.

Key Words: biofilm • quorum sensing

Author contributions: D.L., M.A.F., R.L., and R.K. designed research; D.L. and F.C. performed research; D.L., M.A.F., F.C., R.L., and R.K. analyzed data; and D.L., M.A.F., R.L., and R.K. wrote the paper.

The authors declare no conflict of interest.

This article contains supporting information online at

* It is important to note that NCIB3610 is a wild strain that produces surfactin. The commonly used laboratory strain 168 does not produce surfactin because of a mutation in the sfp gene.

1To whom correspondence may be addressed. E-mail: losick{at} or rkolter{at}

© 2009 by The National Academy of Sciences of the USA

Bacterial Competition Reveals Differential Regulation of the pks Genes by Bacillus subtilis.
C. Vargas-Bautista, K. Rahlwes, and P. Straight (2014)
J. Bacteriol. 196, 717-728
   Abstract »    Full Text »    PDF »
Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm.
V. L. Marlow, M. Porter, L. Hobley, T. B. Kiley, J. R. Swedlow, F. A. Davidson, and N. R. Stanley-Wall (2014)
J. Bacteriol. 196, 16-27
   Abstract »    Full Text »    PDF »
Overproduction of Flotillin Influences Cell Differentiation and Shape in Bacillus subtilis.
B. Mielich-Suss, J. Schneider, and D. Lopez (2013)
mBio 4, e00719-13
   Abstract »    Full Text »    PDF »
A Combination of Glycerol and Manganese Promotes Biofilm Formation in Bacillus subtilis via Histidine Kinase KinD Signaling.
M. Shemesh and Y. Chai (2013)
J. Bacteriol. 195, 2747-2754
   Abstract »    Full Text »    PDF »
A Plasmid-Encoded Phosphatase Regulates Bacillus subtilis Biofilm Architecture, Sporulation, and Genetic Competence.
V. Parashar, M. A. Konkol, D. B. Kearns, and M. B. Neiditch (2013)
J. Bacteriol. 195, 2437-2448
   Abstract »    Full Text »    PDF »
Bacillus subtilis biofilm induction by plant polysaccharides.
P. B. Beauregard, Y. Chai, H. Vlamakis, R. Losick, and R. Kolter (2013)
PNAS 110, E1621-E1630
   Abstract »    Full Text »    PDF »
Expression of kinA and kinB of Bacillus subtilis, Necessary for Sporulation Initiation, Is under Positive Stringent Transcription Control.
S. Tojo, K. Hirooka, and Y. Fujita (2013)
J. Bacteriol. 195, 1656-1665
   Abstract »    Full Text »    PDF »
Respiration control of multicellularity in Bacillus subtilis by a complex of the cytochrome chain with a membrane-embedded histidine kinase.
I. Kolodkin-Gal, A. K. W. Elsholz, C. Muth, P. R. Girguis, R. Kolter, and R. Losick (2013)
Genes & Dev. 27, 887-899
   Abstract »    Full Text »    PDF »
Swarming: Flexible Roaming Plans.
J. D. Partridge and R. M. Harshey (2013)
J. Bacteriol. 195, 909-918
   Abstract »    Full Text »    PDF »
E. Ozyamak, J. Kollman, D. A. Agard, and A. Komeili (2013)
J. Biol. Chem. 288, 4265-4277
   Abstract »    Full Text »    PDF »
Contribution of Bacillomycin D in Bacillus amyloliquefaciens SQR9 to Antifungal Activity and Biofilm Formation.
Z. Xu, J. Shao, B. Li, X. Yan, Q. Shen, and R. Zhang (2013)
Appl. Envir. Microbiol. 79, 808-815
   Abstract »    Full Text »    PDF »
A serine sensor for multicellularity in a bacterium.
A. R. Subramaniam, A. DeLoughery, N. Bradshaw, Y. Chen, E. O'Shea, R. Losick, and Y. Chai (2013)
eLife Sci 2, e01501
   Abstract »    Full Text »    PDF »
Direct surfactin-gramicidin S antagonism supports detoxification in mixed producer cultures of Bacillus subtilis and Aneurinibacillus migulanus.
M. Rautenbach, H. A. Eyeghe-Bickong, N. M. Vlok, M. Stander, and A. de Beer (2012)
Microbiology 158, 3072-3082
   Abstract »    Full Text »    PDF »
Contribution of Surfactin and SwrA to Flagellin Expression, Swimming, and Surface Motility in Bacillus subtilis.
E. Ghelardi, S. Salvetti, M. Ceragioli, S. A. Gueye, F. Celandroni, and S. Senesi (2012)
Appl. Envir. Microbiol. 78, 6540-6544
   Abstract »    Full Text »    PDF »
Enzymatic resistance to the lipopeptide surfactin as identified through imaging mass spectrometry of bacterial competition.
B. C. Hoefler, K. V. Gorzelnik, J. Y. Yang, N. Hendricks, P. C. Dorrestein, and P. D. Straight (2012)
PNAS 109, 13082-13087
   Abstract »    Full Text »    PDF »
Identification of Bacillus subtilis SipW as a Bifunctional Signal Peptidase That Controls Surface-Adhered Biofilm Formation.
R. Terra, N. R. Stanley-Wall, G. Cao, and B. A. Lazazzera (2012)
J. Bacteriol. 194, 2781-2790
   Abstract »    Full Text »    PDF »
Cereulide produced by Bacillus cereus increases the fitness of the producer organism in low-potassium environments.
J. V. Ekman, A. Kruglov, M. A. Andersson, R. Mikkola, M. Raulio, and M. Salkinoja-Salonen (2012)
Microbiology 158, 1106-1116
   Abstract »    Full Text »    PDF »
Streptomycin-Induced Expression in Bacillus subtilis of YtnP, a Lactonase-Homologous Protein That Inhibits Development and Streptomycin Production in Streptomyces griseus.
J. Schneider, A. Yepes, J. C. Garcia-Betancur, I. Westedt, B. Mielich, and D. Lopez (2012)
Appl. Envir. Microbiol. 78, 599-603
   Abstract »    Full Text »    PDF »
Interspecies interactions that result in Bacillus subtilis forming biofilms are mediated mainly by members of its own genus.
E. A. Shank, V. Klepac-Ceraj, L. Collado-Torres, G. E. Powers, R. Losick, and R. Kolter (2011)
PNAS 108, E1236-E1243
   Abstract »    Full Text »    PDF »
Phosphorylation of Spo0A by the Histidine Kinase KinD Requires the Lipoprotein Med in Bacillus subtilis.
A. V. Banse, E. C. Hobbs, and R. Losick (2011)
J. Bacteriol. 193, 3949-3955
   Abstract »    Full Text »    PDF »
Global Gene Expression Profile for Swarming Bacillus cereus Bacteria.
S. Salvetti, K. Faegri, E. Ghelardi, A.-B. Kolsto, and S. Senesi (2011)
Appl. Envir. Microbiol. 77, 5149-5156
   Abstract »    Full Text »    PDF »
Comparative Analysis of Antimicrobial Activities of Valinomycin and Cereulide, the Bacillus cereus Emetic Toxin.
M. H. Tempelaars, S. Rodrigues, and T. Abee (2011)
Appl. Envir. Microbiol. 77, 2755-2762
   Abstract »    Full Text »    PDF »
Tracing the Domestication of a Biofilm-Forming Bacterium.
A. L. McLoon, S. B. Guttenplan, D. B. Kearns, R. Kolter, and R. Losick (2011)
J. Bacteriol. 193, 2027-2034
   Abstract »    Full Text »    PDF »
Spatial Regulation of Histidine Kinases Governing Biofilm Formation in Bacillus subtilis.
A. L. McLoon, I. Kolodkin-Gal, S. M. Rubinstein, R. Kolter, and R. Losick (2011)
J. Bacteriol. 193, 679-685
   Abstract »    Full Text »    PDF »
The Biocide Chlorine Dioxide Stimulates Biofilm Formation in Bacillus subtilis by Activation of the Histidine Kinase KinC.
M. Shemesh, R. Kolter, and R. Losick (2010)
J. Bacteriol. 192, 6352-6356
   Abstract »    Full Text »    PDF »
Functional microdomains in bacterial membranes.
D. Lopez and R. Kolter (2010)
Genes & Dev. 24, 1893-1902
   Abstract »    Full Text »    PDF »
D. Lopez, H. Vlamakis, and R. Kolter (2010)
Cold Spring Harb Perspect Biol 2, a000398
   Abstract »    Full Text »    PDF »
KinD Is a Checkpoint Protein Linking Spore Formation to Extracellular-Matrix Production in Bacillus subtilis Biofilms.
C. Aguilar, H. Vlamakis, A. Guzman, R. Losick, and R. Kolter (2010)
mBio 1, e00035-10
   Abstract »    Full Text »    PDF »
{sigma}X Is Involved in Controlling Bacillus subtilis Biofilm Architecture through the AbrB Homologue Abh.
E. J. Murray, M. A. Strauch, and N. R. Stanley-Wall (2009)
J. Bacteriol. 191, 6822-6832
   Abstract »    Full Text »    PDF »
Paracrine signaling in a bacterium.
D. Lopez, H. Vlamakis, R. Losick, and R. Kolter (2009)
Genes & Dev. 23, 1631-1638
   Abstract »    Full Text »    PDF »
RemA (YlzA) and RemB (YaaB) Regulate Extracellular Matrix Operon Expression and Biofilm Formation in Bacillus subtilis.
J. T. Winkelman, K. M. Blair, and D. B. Kearns (2009)
J. Bacteriol. 191, 3981-3991
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882