Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 106 (14): 5972-5977

Copyright © 2009 by the National Academy of Sciences.

From the Cover


BIOLOGICAL SCIENCES / PHYSIOLOGY

Calmodulin kinase II is required for fight or flight sinoatrial node physiology

Yuejin Wua,1, Zhan Gaoa,2, Biyi Chena,2, Olha M. Kovala, Madhu V. Singha, Xiaoqun Guana, Thomas J. Hunda, William Kutschkea, Satyam Sarmab, Isabella M. Grumbacha, Xander H. T. Wehrensb, Peter J. Mohlera,c, Long-Sheng Songa, and Mark E. Andersona,c,1

Departments of aInternal Medicine and cMolecular Physiology and Biophysics, University of Iowa, 2256 CBRB, Iowa City, IA 52242; and bDepartments of Molecular Physiology and Biophysics, and Medicine (in Cardiology), Baylor College of Medicine, One Baylor Plaza BCM335, Houston, TX 77030

Edited by William Jonathan Lederer, University of Maryland Biotechnology Institute, Baltimore, MD, and accepted by the Editorial Board January 26, 2009

Received for publication July 2, 2008.

Abstract: The best understood "fight or flight" mechanism for increasing heart rate (HR) involves activation of a cyclic nucleotide-gated ion channel (HCN4) by β-adrenergic receptor (βAR) agonist stimulation. HCN4 conducts an inward "pacemaker" current (If) that increases the sinoatrial nodal (SAN) cell membrane diastolic depolarization rate (DDR), leading to faster SAN action potential generation. Surprisingly, HCN4 knockout mice were recently shown to retain physiological HR increases with isoproterenol (ISO), suggesting that other If-independent pathways are critical to SAN fight or flight responses. The multifunctional Ca2+ and calmodulin-dependent protein kinase II (CaMKII) is a downstream signal in the βAR pathway that activates Ca2+ homeostatic proteins in ventricular myocardium. Mice with genetic, myocardial and SAN cell CaMKII inhibition have significantly slower HRs than controls during stress, leading us to hypothesize that CaMKII actions on SAN Ca2+ homeostasis are critical for βAR agonist responses in SAN. Here we show that CaMKII mediates ISO HR increases by targeting SAN cell Ca2+ homeostasis. CaMKII inhibition prevents ISO effects on SAN Ca2+ uptake and release from intracellular sarcoplasmic reticulum (SR) stores that are necessary for increasing DDR. CaMKII inhibition has no effect on the ISO response in SAN cells when SR Ca2+ release is disabled and CaMKII inhibition is only effective at slowing HRs during βAR stimulation. These studies show the tightly coupled, but previously unanticipated, relationship of CaMKII to the βAR pathway in fight or flight physiology and establish CaMKII as a critical signaling molecule for physiological HR responses to catecholamines.

Key Words: sarcoplasmic reticulum • cardiac pacemaker • calcium • isoproterenol • HCN4


Author contributions: Y.W., X.H.T.W., P.J.M., L.-S.S., and M.E.A. designed research; Y.W., Z.G., B.C., O.M.K., M.V.S., T.J.H., W.K., S.S., and P.J.M. performed research; X.G., T.J.H., and I.M.G. contributed new reagents/analytic tools; Y.W., Z.G., B.C., O.M.K., M.V.S., S.S., X.H.T.W., P.J.M., L.-S.S., and M.E.A. analyzed data; and M.E.A. wrote the paper.

2Z.G. and B.C. contributed equally to this work.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission. W.J.L. is a guest editor invited by the Editorial Board.

This article contains supporting information online at www.pnas.org/cgi/content/full/0806422106/DCSupplemental.

1To whom correspondence may be addressed. E-mail: yuejin-wu{at}uiowa.edu or mark-e-anderson{at}uiowa.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Oxidized Ca2+/Calmodulin-Dependent Protein Kinase II Triggers Atrial Fibrillation.
A. Purohit, A. G. Rokita, X. Guan, B. Chen, O. M. Koval, N. Voigt, S. Neef, T. Sowa, Z. Gao, E. D. Luczak, et al. (2013)
Circulation 128, 1748-1757
   Abstract »    Full Text »    PDF »
Phosphoproteomics Study Based on In Vivo Inhibition Reveals Sites of Calmodulin-Dependent Protein Kinase II Regulation in the Heart.
A. Scholten, C. Preisinger, E. Corradini, V. J. Bourgonje, M. L. Hennrich, T. A. B. van Veen, P. D. Swaminathan, M.-L. Joiner, M. A. Vos, M. E. Anderson, et al. (2013)
JAHA 2, e000318
   Abstract »    Full Text »    PDF »
Calmodulin-Dependent Protein Kinase II: Linking Heart Failure and Arrhythmias.
P. D. Swaminathan, A. Purohit, T. J. Hund, and M. E. Anderson (2012)
Circ. Res. 110, 1661-1677
   Abstract »    Full Text »    PDF »
CaMKII inhibition in heart failure, beneficial, harmful, or both.
J. Cheng, L. Xu, D. Lai, A. Guilbert, H. J. Lim, T. Keskanokwong, and Y. Wang (2012)
Am J Physiol Heart Circ Physiol 302, H1454-H1465
   Abstract »    Full Text »    PDF »
Calcium Signaling in Cardiac Myocytes.
C. J. Fearnley, H. L. Roderick, and M. D. Bootman (2011)
Cold Spring Harb Perspect Biol 3, a004242
   Abstract »    Full Text »    PDF »
Nav1.5-dependent persistent Na+ influx activates CaMKII in rat ventricular myocytes and N1325S mice.
L. Yao, P. Fan, Z. Jiang, S. Viatchenko-Karpinski, Y. Wu, D. Kornyeyev, R. Hirakawa, G. R. Budas, S. Rajamani, J. C. Shryock, et al. (2011)
Am J Physiol Cell Physiol 301, C577-C586
   Abstract »    Full Text »    PDF »
A mathematical model of action potentials of mouse sinoatrial node cells with molecular bases.
S. Kharche, J. Yu, M. Lei, and H. Zhang (2011)
Am J Physiol Heart Circ Physiol 301, H945-H963
   Abstract »    Full Text »    PDF »
CaMKII in the Cardiovascular System: Sensing Redox States.
J. R. Erickson, B. J. He, I. M. Grumbach, and M. E. Anderson (2011)
Physiol Rev 91, 889-915
   Abstract »    Full Text »    PDF »
Catecholamine-Independent Heart Rate Increases Require Ca2+/Calmodulin-Dependent Protein Kinase II.
Z. Gao, M. V. Singh, D. D. Hall, O. M. Koval, E. D. Luczak, M.-l. A. Joiner, B. Chen, Y. Wu, A. K. Chaudhary, J. B. Martins, et al. (2011)
Circ Arrhythm Electrophysiol 4, 379-387
   Abstract »    Full Text »    PDF »
cAMP Sensitivity of HCN Pacemaker Channels Determines Basal Heart Rate But Is Not Critical for Autonomic Rate Control.
P. A. Schweizer, N. Duhme, D. Thomas, R. Becker, J. Zehelein, A. Draguhn, C. Bruehl, H. A. Katus, and M. Koenen (2010)
Circ Arrhythm Electrophysiol 3, 542-552
   Abstract »    Full Text »    PDF »
Sarcoplasmic Reticulum Ca2+ Pumping Kinetics Regulates Timing of Local Ca2+ Releases and Spontaneous Beating Rate of Rabbit Sinoatrial Node Pacemaker Cells.
T. M. Vinogradova, D. X. P. Brochet, S. Sirenko, Y. Li, H. Spurgeon, and E. G. Lakatta (2010)
Circ. Res. 107, 767-775
   Abstract »    Full Text »    PDF »
Alterations of L-Type Calcium Current and Cardiac Function in CaMKII{delta} Knockout Mice.
L. Xu, D. Lai, J. Cheng, H. J. Lim, T. Keskanokwong, J. Backs, E. N. Olson, and Y. Wang (2010)
Circ. Res. 107, 398-407
   Abstract »    Full Text »    PDF »
A novel quantitative explanation for the autonomic modulation of cardiac pacemaker cell automaticity via a dynamic system of sarcolemmal and intracellular proteins.
V. A. Maltsev and E. G. Lakatta (2010)
Am J Physiol Heart Circ Physiol 298, H2010-H2023
   Abstract »    Full Text »    PDF »
A Coupled SYSTEM of Intracellular Ca2+ Clocks and Surface Membrane Voltage Clocks Controls the Timekeeping Mechanism of the Heart's Pacemaker.
E. G. Lakatta, V. A. Maltsev, and T. M. Vinogradova (2010)
Circ. Res. 106, 659-673
   Abstract »    Full Text »    PDF »
The Role of the Funny Current in Pacemaker Activity.
D. DiFrancesco (2010)
Circ. Res. 106, 434-446
   Abstract »    Full Text »    PDF »
Control of heart rate by cAMP sensitivity of HCN channels.
J. Alig, L. Marger, P. Mesirca, H. Ehmke, M. E. Mangoni, and D. Isbrandt (2009)
PNAS 106, 12189-12194
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882