Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 106 (50): 21401-21406

Copyright © 2009 by the National Academy of Sciences.


The transcriptional coactivator PGC-1{alpha} mediates exercise-induced angiogenesis in skeletal muscle

Jessica Chinsomboona, Jorge Ruasb, Rana K. Guptab, Robyn Thoma, Jonathan Shoaga, Glenn C. Rowea, Naoki Sawadaa,c, Srilatha Raghurama, and Zoltan Aranya,1

aCardiovascular Institute, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA 02215; bDana Farber Cancer Institute and the Department of Cell Biology, Harvard Medical School, 44 Binney Street, Boston, MA 02115; and cGlobal Center of Excellence Program, International Research Center for Molecular Science in Tooth and Bone Diseases, Tokyo Medical and Dental University, Tokyo 113-8510, Japan

Edited by Bruce M. Spiegelman, Dana-Farber Cancer Institute/Harvard Medical School, Boston, MA 02115, and approved October 22, 2009

Received for publication August 11, 2009.

Abstract: Peripheral arterial disease (PAD) affects 5 million people in the US and is the primary cause of limb amputations. Exercise remains the single best intervention for PAD, in part thought to be mediated by increases in capillary density. How exercise triggers angiogenesis is not known. PPAR{gamma} coactivator (PGC)-1{alpha} is a potent transcriptional co-activator that regulates oxidative metabolism in a variety of tissues. We show here that PGC-1{alpha} mediates exercise-induced angiogenesis. Voluntary exercise induced robust angiogenesis in mouse skeletal muscle. Mice lacking PGC-1{alpha} in skeletal muscle failed to increase capillary density in response to exercise. Exercise strongly induced expression of PGC-1{alpha} from an alternate promoter. The induction of PGC-1{alpha} depended on β-adrenergic signaling. β-adrenergic stimulation also induced a broad program of angiogenic factors, including vascular endothelial growth factor (VEGF). This induction required PGC-1{alpha}. The orphan nuclear receptor ERR{alpha} mediated the induction of VEGF by PGC-1{alpha}, and mice lacking ERR{alpha} also failed to increase vascular density after exercise. These data demonstrate that β-adrenergic stimulation of a PGC-1{alpha}/ERR{alpha}/VEGF axis mediates exercise-induced angiogenesis in skeletal muscle.

Key Words: VEGF • ERR{alpha} • β-adrenergic

Author contributions: J.C. and Z.A. designed research; J.C., J.R., J.S., G.C.R., N.S., S.R., and Z.A. performed research; J.R. and R.K.G. contributed new reagents/analytic tools; J.C., R.T., J.S., G.C.R., N.S., S.R., and Z.A. analyzed data; and Z.A. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

1To whom correspondence should be addressed. E-mail: zarany{at}

Hypoxic Induction of Vascular Endothelial Growth Factor (VEGF) and Angiogenesis in Muscle by Truncated Peroxisome Proliferator-activated Receptor {gamma} Coactivator (PGC)-1{alpha}.
R. Thom, G. C. Rowe, C. Jang, A. Safdar, and Z. Arany (2014)
J. Biol. Chem. 289, 8810-8817
   Abstract »    Full Text »    PDF »
Running Forward: New Frontiers in Endurance Exercise Biology.
G. C. Rowe, A. Safdar, and Z. Arany (2014)
Circulation 129, 798-810
   Full Text »    PDF »
Full-length PGC-1{alpha} salvages the phenotype of a mouse model of human neuropathy through mitochondrial proliferation.
K. Rona-Voros, J. Eschbach, A. Vernay, D. Wiesner, B. Schwalenstocker, P. Geniquet, B. Mousson De Camaret, A. Echaniz-Laguna, J.-P. Loeffler, A. C. Ludolph, et al. (2013)
Hum. Mol. Genet. 22, 5096-5106
   Abstract »    Full Text »    PDF »
Road to exercise mimetics: targeting nuclear receptors in skeletal muscle.
W. Fan, A. R. Atkins, R. T. Yu, M. Downes, and R. M. Evans (2013)
J. Mol. Endocrinol. 51, T87-T100
   Abstract »    Full Text »    PDF »
The truncated splice variants, NT-PGC-1{alpha} and PGC-1{alpha}4, increase with both endurance and resistance exercise in human skeletal muscle.
M. Ydfors, H. Fischer, H. Mascher, E. Blomstrand, J. Norrbom, and T. Gustafsson (2013)
PHY2 1, e00140
   Abstract »    Full Text »    PDF »
Muscle ERR{gamma} mitigates Duchenne muscular dystrophy via metabolic and angiogenic reprogramming.
A. Matsakas, V. Yadav, S. Lorca, and V. Narkar (2013)
FASEB J 27, 4004-4016
   Abstract »    Full Text »    PDF »
Exercise restores decreased physical activity levels and increases markers of autophagy and oxidative capacity in myostatin/activin-blocked mdx mice.
J. J. Hulmi, B. M. Oliveira, M. Silvennoinen, W. M. H. Hoogaars, A. Pasternack, H. Kainulainen, and O. Ritvos (2013)
Am J Physiol Endocrinol Metab 305, E171-E182
   Abstract »    Full Text »    PDF »
The emerging issue of cardiac dysfunction induced by antineoplastic angiogenesis inhibitors.
C. G. Tocchetti, G. Gallucci, C. Coppola, G. Piscopo, C. Cipresso, C. Maurea, A. Giudice, R. V. Iaffaioli, C. Arra, and N. Maurea (2013)
Eur J Heart Fail 15, 482-489
   Abstract »    Full Text »    PDF »
{beta}-Adrenergic stimulation does not activate p38 MAP kinase or induce PGC-1{alpha} in skeletal muscle.
S. H. Kim, M. Asaka, K. Higashida, Y. Takahashi, J. O. Holloszy, and D.-H. Han (2013)
Am J Physiol Endocrinol Metab 304, E844-E852
   Abstract »    Full Text »    PDF »
Supplementing Obese Zucker Rats with Niacin Induces the Transition of Glycolytic to Oxidative Skeletal Muscle Fibers.
R. Ringseis, S. Rosenbaum, D. K. Gessner, L. Herges, J. F. Kubens, F.-C. Mooren, K. Kruger, and K. Eder (2013)
J. Nutr. 143, 125-131
   Abstract »    Full Text »    PDF »
Exercise Training Attenuates Placental Ischemia-Induced Hypertension and Angiogenic Imbalance in the Rat.
J. S. Gilbert, C. T. Banek, A. J. Bauer, A. Gingery, and K. Needham (2012)
Hypertension 60, 1545-1551
   Abstract »    Full Text »    PDF »
Molecular Pathways: The Metabolic Regulator Estrogen-Related Receptor {alpha} as a Therapeutic Target in Cancer.
C.-y. Chang and D. P. McDonnell (2012)
Clin. Cancer Res. 18, 6089-6095
   Abstract »    Full Text »    PDF »
Deletion of heart-type cytochrome c oxidase subunit 7a1 impairs skeletal muscle angiogenesis and oxidative phosphorylation.
I. Lee, M. Huttemann, J. Liu, L. I. Grossman, and M. H. Malek (2012)
J. Physiol. 590, 5231-5243
   Abstract »    Full Text »    PDF »
More than a store: regulatory roles for glycogen in skeletal muscle adaptation to exercise.
A. Philp, M. Hargreaves, and K. Baar (2012)
Am J Physiol Endocrinol Metab 302, E1343-E1351
   Abstract »    Full Text »    PDF »
Effects of Aging on Angiogenesis.
J. Lahteenvuo and A. Rosenzweig (2012)
Circ. Res. 110, 1252-1264
   Abstract »    Full Text »    PDF »
Skeletal muscle transcriptional coactivator PGC-1{alpha} mediates mitochondrial, but not metabolic, changes during calorie restriction.
L. W. S. Finley, J. Lee, A. Souza, V. Desquiret-Dumas, K. Bullock, G. C. Rowe, V. Procaccio, C. B. Clish, Z. Arany, and M. C. Haigis (2012)
PNAS 109, 2931-2936
   Abstract »    Full Text »    PDF »
Differences in locomotor performance between individuals: importance of parvalbumin, calcium handling and metabolism.
F. Seebacher and I. Walter (2012)
J. Exp. Biol. 215, 663-670
   Abstract »    Full Text »    PDF »
Characterization of Novel Peroxisome Proliferator-activated Receptor {gamma} Coactivator-1{alpha} (PGC-1{alpha}) Isoform in Human Liver.
T. K. Felder, S. M. Soyal, H. Oberkofler, P. Hahne, S. Auer, R. Weiss, G. Gadermaier, K. Miller, F. Krempler, H. Esterbauer, et al. (2011)
J. Biol. Chem. 286, 42923-42936
   Abstract »    Full Text »    PDF »
Alternative splice variant PGC-1{alpha}-b is strongly induced by exercise in human skeletal muscle.
J. Norrbom, E. K. Sallstedt, H. Fischer, C. J. Sundberg, H. Rundqvist, and T. Gustafsson (2011)
Am J Physiol Endocrinol Metab 301, E1092-E1098
   Abstract »    Full Text »    PDF »
PGC-1{beta} regulates angiogenesis in skeletal muscle.
G. C. Rowe, C. Jang, I. S. Patten, and Z. Arany (2011)
Am J Physiol Endocrinol Metab 301, E155-E163
   Abstract »    Full Text »    PDF »
Effect of exercise intensity and AICAR on isoform-specific expressions of murine skeletal muscle PGC-1{alpha} mRNA: a role of {beta}2-adrenergic receptor activation.
M. Tadaishi, S. Miura, Y. Kai, E. Kawasaki, K. Koshinaka, K. Kawanaka, J. Nagata, Y. Oishi, and O. Ezaki (2011)
Am J Physiol Endocrinol Metab 300, E341-E349
   Abstract »    Full Text »    PDF »
Exercise Rehabilitation in Peripheral Artery Disease: Functional Impact and Mechanisms of Benefits.
N. M. Hamburg and G. J. Balady (2011)
Circulation 123, 87-97
   Full Text »    PDF »
Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle.
Z. Yan, M. Okutsu, Y. N. Akhtar, and V. A. Lira (2011)
J Appl Physiol 110, 264-274
   Abstract »    Full Text »    PDF »
PGC-1{alpha} regulates a HIF2{alpha}-dependent switch in skeletal muscle fiber types.
K. A. Rasbach, R. K. Gupta, J. L. Ruas, J. Wu, E. Naseri, J. L. Estall, and B. M. Spiegelman (2010)
PNAS 107, 21866-21871
   Abstract »    Full Text »    PDF »
Skeletal muscle-endothelial cell cross talk through angiotensin II.
L. M. Bellamy, A. P. W. Johnston, M. De Lisio, and G. Parise (2010)
Am J Physiol Cell Physiol 299, C1402-C1408
   Abstract »    Full Text »    PDF »
PGC-1 Coactivators in Cardiac Development and Disease.
G. C. Rowe, A. Jiang, and Z. Arany (2010)
Circ. Res. 107, 825-838
   Abstract »    Full Text »    PDF »
Cardiovascular Effects of Exercise Training: Molecular Mechanisms.
S. Gielen, G. Schuler, and V. Adams (2010)
Circulation 122, 1221-1238
   Full Text »    PDF »
PGC-1{alpha} regulation by exercise training and its influences on muscle function and insulin sensitivity.
V. A. Lira, C. R. Benton, Z. Yan, and A. Bonen (2010)
Am J Physiol Endocrinol Metab 299, E145-E161
   Abstract »    Full Text »    PDF »
Oxygen: Both a Passenger and a Biological Determinant in the Vasculature.
F. J. Giordano (2010)
Arterioscler Thromb Vasc Biol 30, 641-642
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882