Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 106 (6): 2059-2064

Copyright © 2009 by the National Academy of Sciences.


Functional expression of the olfactory signaling system in the kidney

Jennifer L. Pluznicka, Dong-Jing Zoub, Xiaohong Zhangb, Qingshang Yana, Diego J. Rodriguez-Gilc, Christoph Eisnerd, Erika Wellsa, Charles A. Greerc, Tong Wanga, Stuart Firesteinb, Jurgen Schnermannd, and Michael J. Caplana,1

aDepartment of Cellular and Molecular Physiology, Yale School of Medicine, New Haven, CT 06520; bDepartment of Biological Sciences, Columbia University, New York, NY 10027; cDepartment of Neurosurgery, Yale School of Medicine, New Haven, CT 06510; and dNational Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892

Communicated by Edward A. Adelberg, Yale University, New Haven, CT, December 17, 2008

Received for publication November 3, 2008.

Abstract: Olfactory-like chemosensory signaling occurs outside of the olfactory epithelium. We find that major components of olfaction, including olfactory receptors (ORs), olfactory-related adenylate cyclase (AC3) and the olfactory G protein (Golf), are expressed in the kidney. AC3 and Golf colocalize in renal tubules and in macula densa (MD) cells which modulate glomerular filtration rate (GFR). GFR is significantly reduced in AC3–/– mice, suggesting that AC3 participates in GFR regulation. Although tubuloglomerular feedback is normal in these animals, they exhibit significantly reduced plasma renin levels despite up-regulation of COX-2 expression and nNOS activity in the MD. Furthermore, at least one member of the renal repertoire of ORs is expressed in a MD cell line. Thus, key components of olfaction are expressed in the renal distal nephron and may play a sensory role in the MD to modulate both renin secretion and GFR.

Key Words: adenylate cyclase 3 • glomerular filtration rate • Golf • macula densa • renin

Author contributions: J.L.P., J.S., and M.J.C. designed research; J.L.P., Q.Y., D.J. R.-G., C.E., E.W., and J.S. performed research; D.-J.Z., X.Z., Q.Y., D.J.R.-G., C.A.G., T.W., and S.F. contributed new reagents/analytic tools; J.L.P., T.W., S.F., J.S., and M.J.C. analyzed data; and J.L.P., J.S., and M.J.C. wrote the paper.

The authors declare no conflict of interest.

This article contains supporting information online at

1To whom correspondence should be addressed at: 333 Cedar Street, SHM B-147, Yale University School of Medicine, New Haven, CT 06510. E-mail: michael.caplan{at}

Regulation of nephron water and electrolyte transport by adenylyl cyclases.
T. Rieg and D. E. Kohan (2014)
Am J Physiol Renal Physiol 306, F701-F709
   Abstract »    Full Text »    PDF »
Lack of an effect of collecting duct-specific deletion of adenylyl cyclase 3 on renal Na+ and water excretion or arterial pressure.
W. Kittikulsuth, D. Stuart, A. N. Van Hoek, J. D. Stockand, V. Bugaj, E. Mironova, M. A. Blount, and D. E. Kohan (2014)
Am J Physiol Renal Physiol 306, F597-F607
   Abstract »    Full Text »    PDF »
Adenylyl cyclase 4 does not regulate collecting duct water and sodium handling.
W. Kittikulsuth, D. Stuart, and D. E. Kohan (2014)
PHY2 2, e00277
   Abstract »    Full Text »    PDF »
Adenylyl Cyclase 6 Deficiency Ameliorates Polycystic Kidney Disease.
S. Rees, W. Kittikulsuth, K. Roos, K. A. Strait, A. Van Hoek, and D. E. Kohan (2014)
J. Am. Soc. Nephrol. 25, 232-237
   Abstract »    Full Text »    PDF »
Isoform Selectivity of Adenylyl Cyclase Inhibitors: Characterization of Known and Novel Compounds.
C. S. Brand, H. J. Hocker, A. A. Gorfe, C. N. Cavasotto, and C. W. Dessauer (2013)
J. Pharmacol. Exp. Ther. 347, 265-275
   Abstract »    Full Text »    PDF »
Renal and cardiovascular sensory receptors and blood pressure regulation.
J. L. Pluznick (2013)
Am J Physiol Renal Physiol 305, F439-F444
   Abstract »    Full Text »    PDF »
Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation.
J. L. Pluznick, R. J. Protzko, H. Gevorgyan, Z. Peterlin, A. Sipos, J. Han, I. Brunet, L.-X. Wan, F. Rey, T. Wang, et al. (2013)
PNAS 110, 4410-4415
   Abstract »    Full Text »    PDF »
Adenylyl Cyclase VI Mediates Vasopressin-Stimulated ENaC Activity.
K. P. Roos, V. Bugaj, E. Mironova, J. D. Stockand, N. Ramkumar, S. Rees, and D. E. Kohan (2013)
J. Am. Soc. Nephrol. 24, 218-227
   Abstract »    Full Text »    PDF »
Calmodulin-sensitive adenylyl cyclases mediate AVP-dependent cAMP production and Cl- secretion by human autosomal dominant polycystic kidney cells.
C. S. Pinto, G. A. Reif, E. Nivens, C. White, and D. P. Wallace (2012)
Am J Physiol Renal Physiol 303, F1412-F1424
   Abstract »    Full Text »    PDF »
Stimulation of Electro-Olfactogram Responses in the Main Olfactory Epithelia by Airflow Depends on the Type 3 Adenylyl Cyclase.
X. Chen, Z. Xia, and D. R. Storm (2012)
J. Neurosci. 32, 15769-15778
   Abstract »    Full Text »    PDF »
Phosphorylation of Adenylyl Cyclase III at Serine1076 Does Not Attenuate Olfactory Response in Mice.
K. D. Cygnar, S. E. Collins, C. H. Ferguson, C. Bodkin-Clarke, and H. Zhao (2012)
J. Neurosci. 32, 14557-14562
   Abstract »    Full Text »    PDF »
Preactivation of AMPK by metformin may ameliorate the epithelial cell damage caused by renal ischemia.
P. W. Seo-Mayer, G. Thulin, L. Zhang, D. S. Alves, T. Ardito, M. Kashgarian, and M. J. Caplan (2011)
Am J Physiol Renal Physiol 301, F1346-F1357
   Abstract »    Full Text »    PDF »
Adenylate Cyclase 6 Determines cAMP Formation and Aquaporin-2 Phosphorylation and Trafficking in Inner Medulla.
T. Rieg, T. Tang, F. Murray, J. Schroth, P. A. Insel, R. A. Fenton, H. K. Hammond, and V. Vallon (2010)
J. Am. Soc. Nephrol. 21, 2059-2068
   Abstract »    Full Text »    PDF »
Macula Densa Sensing and Signaling Mechanisms of Renin Release.
J. Peti-Peterdi and R. C. Harris (2010)
J. Am. Soc. Nephrol. 21, 1093-1096
   Abstract »    Full Text »    PDF »
Characterization of vasopressin-responsive collecting duct adenylyl cyclases in the mouse.
K. A. Strait, P. K. Stricklett, M. Chapman, and D. E. Kohan (2010)
Am J Physiol Renal Physiol 298, F859-F867
   Abstract »    Full Text »    PDF »
Contrasting effects of different maternal diets on sexually dimorphic gene expression in the murine placenta.
J. Mao, X. Zhang, P. T. Sieli, M. T. Falduto, K. E. Torres, and C. S. Rosenfeld (2010)
PNAS 107, 5557-5562
   Abstract »    Full Text »    PDF »
Increased Renin Production in Mice With Deletion of Peroxisome Proliferator-Activated Receptor-{gamma} in Juxtaglomerular Cells.
M. Desch, A. Schreiber, F. Schweda, K. Madsen, U. G. Friis, E. T. Weatherford, C. D. Sigmund, M. L. Sequeira Lopez, R. A. Gomez, and V. T. Todorov (2010)
Hypertension 55, 660-666
   Abstract »    Full Text »    PDF »
Dual Activities of Odorants on Olfactory and Nuclear Hormone Receptors.
H. Pick, S. Etter, O. Baud, R. Schmauder, L. Bordoli, T. Schwede, and H. Vogel (2009)
J. Biol. Chem. 284, 30547-30555
   Abstract »    Full Text »    PDF »
Molecular Tuning of Odorant Receptors and Its Implication for Odor Signal Processing.
J. Reisert and D. Restrepo (2009)
Chem Senses 34, 535-545
   Abstract »    Full Text »    PDF »
G Protein-Coupled Receptors as Potential Drug Targets for Lymphangiogenesis and Lymphatic Vascular Diseases.
W. P. Dunworth and K. M. Caron (2009)
Arterioscler Thromb Vasc Biol 29, 650-656
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882