Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 107 (1): 378-383

Copyright © 2010 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / NEUROSCIENCE

PINK1-dependent recruitment of Parkin to mitochondria in mitophagy

Cristofol Vives-Bauzaa,1, Chun Zhoua,1, Yong Huanga,1, Mei Cuib, Rosa L.A. de Vriesa, Jiho Kimc, Jessica Maya, Maja Aleksandra Tocilescua, Wencheng Liud, Han Seok Koe,f, Jordi Magranéd, Darren J. Mooree,f,2, Valina L. Dawsone,f,g,h, Regis Grailhec, Ted M. Dawsone,f,h, Chenjian Lid, Kim Tieub, and Serge Przedborskia,i,j,3

Departments of aNeurology and iPathology and Cell Biology and the jCenter for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032; bDepartment of Neurology, Center for Translational Medicine, University of Rochester, Rochester, NY 14642; c Institut Pasteur Korea, Gyeonggi-do 463-400, Republic of Korea; dDepartment of Neurology and Neurosciences, Weill Medical College of Cornell University, New York, NY 10065; eNeuroRegeneration and Stem Cell Programs, Institute for Cell Engineering, Departments of fNeurology and gPhysiology, and the hSolomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205

Edited by Solomon H. Snyder, Johns Hopkins University School of Medicine, Baltimore, MD, and approved November 9, 2009 (received for review September 29, 2009)

Abstract: Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) and PARK2/Parkin mutations cause autosomal recessive forms of Parkinson's disease. Upon a loss of mitochondrial membrane potential ({Delta}{Psi}m) in human cells, cytosolic Parkin has been reported to be recruited to mitochondria, which is followed by a stimulation of mitochondrial autophagy. Here, we show that the relocation of Parkin to mitochondria induced by a collapse of {Delta}{Psi}m relies on PINK1 expression and that overexpression of WT but not of mutated PINK1 causes Parkin translocation to mitochondria, even in cells with normal {Delta}{Psi}m. We also show that once at the mitochondria, Parkin is in close proximity to PINK1, but we find no evidence that Parkin catalyzes PINK1 ubiquitination or that PINK1 phosphorylates Parkin. However, co-overexpression of Parkin and PINK1 collapses the normal tubular mitochondrial network into mitochondrial aggregates and/or large perinuclear clusters, many of which are surrounded by autophagic vacuoles. Our results suggest that Parkin, together with PINK1, modulates mitochondrial trafficking, especially to the perinuclear region, a subcellular area associated with autophagy. Thus by impairing this process, mutations in either Parkin or PINK1 may alter mitochondrial turnover which, in turn, may cause the accumulation of defective mitochondria and, ultimately, neurodegeneration in Parkinson's disease.

Key Words: autophagy • Parkinson's disease • phosphatase and tensin homolog-induced putative kinase 1


Author contributions: C.V.-B., C.Z., Y.H., and S.P. designed research; C.V.-B., C.Z., Y.H., M.C., R.L.A.d.V., J.K., J. May, M.A.T., W.L., H.S.K., J. Magrané, and R.G. performed research; D.J.M., V.L.D., T.M.D., C.L., and K.T. contributed new reagents/analytic tools; C.V.-B., C.Z., Y.H., and S.P. analyzed data; and C.V.-B., C.Z., Y.H., and S.P. wrote the paper.

1C.V.-B., C.Z., and Y.H. contributed equally to this work.

2Present address: Laboratory of Molecular Neurodegenerative Research, Brain Mind Institute, Ecole Polytechnique Federale de Lausanne, Lausanne, CH 1015, Switzerland.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at www.pnas.org/cgi/content/full/0911187107/DCSupplemental.

3To whom correspondence should be addressed at: BB–302, Columbia University, 650 West 168th Street, New York, NY 10032. E–mail: SP30{at}Columbia.edu.


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Stress-induced OMA1 activation and autocatalytic turnover regulate OPA1-dependent mitochondrial dynamics.
M. J. Baker, P. A. Lampe, D. Stojanovski, A. Korwitz, R. Anand, T. Tatsuta, and T. Langer (2014)
EMBO J. 33, 578-593
   Abstract »    Full Text »    PDF »
Phosphorylation of Parkin at Serine65 is essential for activation: elaboration of a Miro1 substrate-based assay of Parkin E3 ligase activity.
A. Kazlauskaite, V. Kelly, C. Johnson, C. Baillie, C. J. Hastie, M. Peggie, T. Macartney, H. I. Woodroof, D. R. Alessi, P. G. A. Pedrioli, et al. (2014)
Open Bio 4, 130213
   Abstract »    Full Text »    PDF »
Parkin and PINK1 function in a vesicular trafficking pathway regulating mitochondrial quality control.
G.-L. McLelland, V. Soubannier, C. X. Chen, H. M. McBride, and E. A. Fon (2014)
EMBO J. 33, 282-295
   Abstract »    Full Text »    PDF »
Ret rescues mitochondrial morphology and muscle degeneration of Drosophila Pink1 mutants.
P. Klein, A. K. Muller-Rischart, E. Motori, C. Schonbauer, F. Schnorrer, K. F. Winklhofer, and R. Klein (2014)
EMBO J. 33, 341-355
   Abstract »    Full Text »    PDF »
Rapamycin drives selection against a pathogenic heteroplasmic mitochondrial DNA mutation.
Y. Dai, K. Zheng, J. Clark, R. H. Swerdlow, S. M. Pulst, J. P. Sutton, L. A. Shinobu, and D. K. Simon (2014)
Hum. Mol. Genet. 23, 637-647
   Abstract »    Full Text »    PDF »
Cytosolic cleaved PINK1 represses Parkin translocation to mitochondria and mitophagy.
M. A. Fedorowicz, R. L. A. de Vries-Schneider, C. Rub, D. Becker, Y. Huang, C. Zhou, D. M. Alessi Wolken, W. Voos, Y. Liu, and S. Przedborski (2014)
EMBO Rep. 15, 86-93
   Abstract »    Full Text »    PDF »
Mitochondrial Rab GAPs govern autophagosome biogenesis during mitophagy.
K. Yamano, A. I. Fogel, C. Wang, A. M. van der Bliek, and R. J. Youle (2014)
eLife Sci 3, e01612
   Abstract »    Full Text »    PDF »
Hexokinase activity is required for recruitment of parkin to depolarized mitochondria.
M. K. McCoy, A. Kaganovich, I. N. Rudenko, J. Ding, and M. R. Cookson (2014)
Hum. Mol. Genet. 23, 145-156
   Abstract »    Full Text »    PDF »
A Dimeric PINK1-containing Complex on Depolarized Mitochondria Stimulates Parkin Recruitment.
K. Okatsu, M. Uno, F. Koyano, E. Go, M. Kimura, T. Oka, K. Tanaka, and N. Matsuda (2013)
J. Biol. Chem. 288, 36372-36384
   Abstract »    Full Text »    PDF »
Inhibition of excessive mitochondrial fission reduced aberrant autophagy and neuronal damage caused by LRRK2 G2019S mutation.
Y.-C. Su and X. Qi (2013)
Hum. Mol. Genet. 22, 4545-4561
   Abstract »    Full Text »    PDF »
Impairment of Atg5-Dependent Autophagic Flux Promotes Paraquat- and MPP+-Induced Apoptosis But Not Rotenone or 6-Hydroxydopamine Toxicity.
A. Garcia-Garcia, A. Anandhan, M. Burns, H. Chen, Y. Zhou, and R. Franco (2013)
Toxicol. Sci. 136, 166-182
   Abstract »    Full Text »    PDF »
SARM1 and TRAF6 bind to and stabilize PINK1 on depolarized mitochondria.
H. Murata, M. Sakaguchi, K. Kataoka, and N.-h. Huh (2013)
Mol. Biol. Cell 24, 2772-2784
   Abstract »    Full Text »    PDF »
PINK1 regulates histone H3 trimethylation and gene expression by interaction with the polycomb protein EED/WAIT1.
A. Berthier, J. Jimenez-Sainz, and R. Pulido (2013)
PNAS 110, 14729-14734
   Abstract »    Full Text »    PDF »
Casein kinase 2 is essential for mitophagy.
T. Kanki, Y. Kurihara, X. Jin, T. Goda, Y. Ono, M. Aihara, Y. Hirota, T. Saigusa, Y. Aoki, T. Uchiumi, et al. (2013)
EMBO Rep. 14, 788-794
   Abstract »    Full Text »    PDF »
Therapeutic Targeting of Autophagy in Disease: Biology and Pharmacology.
Y. Cheng, X. Ren, W. N. Hait, and J.-M. Yang (2013)
Pharmacol. Rev. 65, 1162-1197
   Abstract »    Full Text »    PDF »
Tyrosine kinase inhibition increases functional parkin-Beclin-1 interaction and enhances amyloid clearance and cognitive performance.
I. Lonskaya, M. L. Hebron, N. M. Desforges, A. Franjie, and C. E.- H. Moussa (2013)
EMBO Mol Med. 5, 1247-1262
   Abstract »    Full Text »    PDF »
Mesencephalic complex I deficiency does not correlate with parkinsonism in mitochondrial DNA maintenance disorders.
E. J. H. Palin, A. Paetau, and A. Suomalainen (2013)
Brain 136, 2379-2392
   Abstract »    Full Text »    PDF »
Structure of the human Parkin ligase domain in an autoinhibited state.
T. Wauer and D. Komander (2013)
EMBO J. 32, 2099-2112
   Abstract »    Full Text »    PDF »
Parkin-catalyzed Ubiquitin-Ester Transfer Is Triggered by PINK1-dependent Phosphorylation.
M. Iguchi, Y. Kujuro, K. Okatsu, F. Koyano, H. Kosako, M. Kimura, N. Suzuki, S. Uchiyama, K. Tanaka, and N. Matsuda (2013)
J. Biol. Chem. 288, 22019-22032
   Abstract »    Full Text »    PDF »
TRAP1 rescues PINK1 loss-of-function phenotypes.
L. Zhang, P. Karsten, S. Hamm, J. H. Pogson, A. K. Muller-Rischart, N. Exner, C. Haass, A. J. Whitworth, K. F. Winklhofer, J. B. Schulz, et al. (2013)
Hum. Mol. Genet. 22, 2829-2841
   Abstract »    Full Text »    PDF »
Autophagy: a potential therapeutic target in lung diseases.
K. Nakahira and A. M. K. Choi (2013)
Am J Physiol Lung Cell Mol Physiol 305, L93-L107
   Abstract »    Full Text »    PDF »
PINK1 rendered temperature sensitive by disease-associated and engineered mutations.
D. P. Narendra, C. Wang, R. J. Youle, and J. E. Walker (2013)
Hum. Mol. Genet. 22, 2572-2589
   Abstract »    Full Text »    PDF »
Glyceraldehyde-3-phosphate Dehydrogenase (GAPDH) Phosphorylation by Protein Kinase C{delta} (PKC{delta}) Inhibits Mitochondria Elimination by Lysosomal-like Structures following Ischemia and Reoxygenation-induced Injury.
G. Yogalingam, S. Hwang, J. C. B. Ferreira, and D. Mochly-Rosen (2013)
J. Biol. Chem. 288, 18947-18960
   Abstract »    Full Text »    PDF »
Structure of Parkin Reveals Mechanisms for Ubiquitin Ligase Activation.
J.-F. Trempe, V. Sauve, K. Grenier, M. Seirafi, M. Y. Tang, M. Menade, S. Al-Abdul-Wahid, J. Krett, K. Wong, G. Kozlov, et al. (2013)
Science 340, 1451-1455
   Abstract »    Full Text »    PDF »
Parkin overexpression during aging reduces proteotoxicity, alters mitochondrial dynamics, and extends lifespan.
A. Rana, M. Rera, and D. W. Walker (2013)
PNAS 110, 8638-8643
   Abstract »    Full Text »    PDF »
AF-6 is a positive modulator of the PINK1/parkin pathway and is deficient in Parkinson's disease.
J. Haskin, R. Szargel, V. Shani, L. N. Mekies, R. Rott, G. G. Y. Lim, K.-L. Lim, R. Bandopadhyay, H. Wolosker, and S. Engelender (2013)
Hum. Mol. Genet. 22, 2083-2096
   Abstract »    Full Text »    PDF »
Oxidative stress response elicited by mitochondrial dysfunction: Implication in the pathophysiology of aging.
C.-H. Wang, S.-B. Wu, Y.-T. Wu, and Y.-H. Wei (2013)
Experimental Biology and Medicine 238, 450-460
   Abstract »    Full Text »    PDF »
Role of p62/SQSTM1 in liver physiology and pathogenesis.
S. Manley, J. A. Williams, and W.-X. Ding (2013)
Experimental Biology and Medicine 238, 525-538
   Abstract »    Full Text »    PDF »
The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo.
E. S. Vincow, G. Merrihew, R. E. Thomas, N. J. Shulman, R. P. Beyer, M. J. MacCoss, and L. J. Pallanck (2013)
PNAS 110, 6400-6405
   Abstract »    Full Text »    PDF »
Sequestration and autophagy of mitochondria do not cut proteins across the board.
C.-H. Huang, M. Lazarou, and R. J. Youle (2013)
PNAS 110, 6252-6253
   Full Text »    PDF »
Regulation of mitophagy by the Gp78 E3 ubiquitin ligase.
M. Fu, P. St-Pierre, J. Shankar, P. T. C. Wang, B. Joshi, and I. R. Nabi (2013)
Mol. Biol. Cell 24, 1153-1162
   Abstract »    Full Text »    PDF »
Characterization of PINK1 (PTEN-induced Putative Kinase 1) Mutations Associated with Parkinson Disease in Mammalian Cells and Drosophila.
S. Song, S. Jang, J. Park, S. Bang, S. Choi, K.-Y. Kwon, X. Zhuang, E. Kim, and J. Chung (2013)
J. Biol. Chem. 288, 5660-5672
   Abstract »    Full Text »    PDF »
Metabolism of 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine by Mitochondrion-targeted Cytochrome P450 2D6: IMPLICATIONS IN PARKINSON DISEASE.
P. Bajpai, M. C. Sangar, S. Singh, W. Tang, S. Bansal, G. Chowdhury, Q. Cheng, J.-K. Fang, M. V. Martin, F. P. Guengerich, et al. (2013)
J. Biol. Chem. 288, 4436-4451
   Abstract »    Full Text »    PDF »
ATF4 Protects Against Neuronal Death in Cellular Parkinson's Disease Models by Maintaining Levels of Parkin.
X. Sun, J. Liu, J. F. Crary, C. Malagelada, D. Sulzer, L. A. Greene, and O. A. Levy (2013)
J. Neurosci. 33, 2398-2407
   Abstract »    Full Text »    PDF »
Ghrelin is neuroprotective in Parkinson's disease: molecular mechanisms of metabolic neuroprotection.
J. A. Bayliss and Z. B. Andrews (2013)
Therapeutic Advances in Endocrinology and Metabolism 4, 25-36
   Abstract »    PDF »
Phosphatase and Tensin Homolog (PTEN)-induced Putative Kinase 1 (PINK1)-dependent Ubiquitination of Endogenous Parkin Attenuates Mitophagy: STUDY IN HUMAN PRIMARY FIBROBLASTS AND INDUCED PLURIPOTENT STEM CELL-DERIVED NEURONS.
A. Rakovic, K. Shurkewitsch, P. Seibler, A. Grunewald, A. Zanon, J. Hagenah, D. Krainc, and C. Klein (2013)
J. Biol. Chem. 288, 2223-2237
   Abstract »    Full Text »    PDF »
PINK1 drives Parkin self-association and HECT-like E3 activity upstream of mitochondrial binding.
M. Lazarou, D. P. Narendra, S. M. Jin, E. Tekle, S. Banerjee, and R. J. Youle (2013)
J. Cell Biol. 200, 163-172
   Abstract »    Full Text »    PDF »
Parkin and Mitofusins Reciprocally Regulate Mitophagy and Mitochondrial Spheroid Formation.
W.-X. Ding, F. Guo, H.-M. Ni, A. Bockus, S. Manley, D. B. Stolz, E.-L. Eskelinen, H. Jaeschke, and X.-M. Yin (2012)
J. Biol. Chem. 287, 42379-42388
   Abstract »    Full Text »    PDF »
Voltage-dependent Anion Channels (VDACs) Recruit Parkin to Defective Mitochondria to Promote Mitochondrial Autophagy.
Y. Sun, A. A. Vashisht, J. Tchieu, J. A. Wohlschlegel, and L. Dreier (2012)
J. Biol. Chem. 287, 40652-40660
   Abstract »    Full Text »    PDF »
ROS-dependent regulation of Parkin and DJ-1 localization during oxidative stress in neurons.
A. P. Joselin, S. J. Hewitt, S. M. Callaghan, R. H. Kim, Y.-H. Chung, T. W. Mak, J. Shen, R. S. Slack, and D. S. Park (2012)
Hum. Mol. Genet. 21, 4888-4903
   Abstract »    Full Text »    PDF »
Mitochondrial Quality Control Mediated by PINK1 and Parkin: Links to Parkinsonism.
D. Narendra, J. E. Walker, and R. Youle (2012)
Cold Spring Harb Perspect Biol 4, a011338
   Abstract »    Full Text »    PDF »
Drosophila as a Model to Study Mitochondrial Dysfunction in Parkinson's Disease.
M. Guo (2012)
Cold Spring Harb Perspect Med 2, a009944
   Abstract »    Full Text »    PDF »
Mitochondrial dynamics and autophagy aid in removal of persistent mitochondrial DNA damage in Caenorhabditis elegans.
A. S. Bess, T. L. Crocker, I. T. Ryde, and J. N. Meyer (2012)
Nucleic Acids Res. 40, 7916-7931
   Abstract »    Full Text »    PDF »
Parkinsonism Due to Mutations in PINK1, Parkin, and DJ-1 and Oxidative Stress and Mitochondrial Pathways.
M. R. Cookson (2012)
Cold Spring Harb Perspect Med 2, a009415
   Abstract »    Full Text »    PDF »
An anticancer agent, pyrvinium pamoate inhibits the NADH-fumarate reductase system--a unique mitochondrial energy metabolism in tumour microenvironments.
E. Tomitsuka, K. Kita, and H. Esumi (2012)
J. Biochem. 152, 171-183
   Abstract »    Full Text »    PDF »
Programmed Cell Death in Parkinson's Disease.
K. Venderova and D. S. Park (2012)
Cold Spring Harb Perspect Med 2, a009365
   Abstract »    Full Text »    PDF »
Mitochondrial dysfunction in Parkinson's disease: molecular mechanisms and pathophysiological consequences.
N. Exner, A. K. Lutz, C. Haass, and K. F. Winklhofer (2012)
EMBO J. 31, 3038-3062
   Abstract »    Full Text »    PDF »
Pharmacological Rescue of Mitochondrial Deficits in iPSC-Derived Neural Cells from Patients with Familial Parkinson's Disease.
O. Cooper, H. Seo, S. Andrabi, C. Guardia-Laguarta, J. Graziotto, M. Sundberg, J. R. McLean, L. Carrillo-Reid, Z. Xie, T. Osborn, et al. (2012)
Science Translational Medicine 4, 141ra90
   Abstract »    Full Text »    PDF »
Pink1 Kinase and Its Membrane Potential ({Delta}{psi})-dependent Cleavage Product Both Localize to Outer Mitochondrial Membrane by Unique Targeting Mode.
D. Becker, J. Richter, M. A. Tocilescu, S. Przedborski, and W. Voos (2012)
J. Biol. Chem. 287, 22969-22987
   Abstract »    Full Text »    PDF »
Inactivation of Pink1 Gene in Vivo Sensitizes Dopamine-producing Neurons to 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and Can Be Rescued by Autosomal Recessive Parkinson Disease Genes, Parkin or DJ-1.
M. E. Haque, M. P. Mount, F. Safarpour, E. Abdel-Messih, S. Callaghan, C. Mazerolle, T. Kitada, R. S. Slack, V. Wallace, J. Shen, et al. (2012)
J. Biol. Chem. 287, 23162-23170
   Abstract »    Full Text »    PDF »
Analysis of neural subtypes reveals selective mitochondrial dysfunction in dopaminergic neurons from parkin mutants.
J. L. Burman, S. Yu, A. C. Poole, R. B. Decal, and L. Pallanck (2012)
PNAS 109, 10438-10443
   Abstract »    Full Text »    PDF »
PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating Serine 65.
C. Kondapalli, A. Kazlauskaite, N. Zhang, H. I. Woodroof, D. G. Campbell, R. Gourlay, L. Burchell, H. Walden, T. J. Macartney, M. Deak, et al. (2012)
Open Bio 2, 120080
   Abstract »    Full Text »    PDF »
Impaired parkin-mediated mitochondrial targeting to autophagosomes differentially contributes to tissue pathology in lysosomal storage diseases.
R. de Pablo-Latorre, A. Saide, E. V. Polishhuck, E. Nusco, A. Fraldi, and A. Ballabio (2012)
Hum. Mol. Genet. 21, 1770-1781
   Abstract »    Full Text »    PDF »
Silent Information Regulator 2 (Sir2) and Forkhead Box O (FOXO) Complement Mitochondrial Dysfunction and Dopaminergic Neuron Loss in Drosophila PTEN-induced Kinase 1 (PINK1) Null Mutant.
H. Koh, H. Kim, M. J. Kim, J. Park, H.-J. Lee, and J. Chung (2012)
J. Biol. Chem. 287, 12750-12758
   Abstract »    Full Text »    PDF »
The Role of Autophagy in Parkinson's Disease.
M. A. Lynch-Day, K. Mao, K. Wang, M. Zhao, and D. J. Klionsky (2012)
Cold Spring Harb Perspect Med 2, a009357
   Abstract »    Full Text »    PDF »
Mitochondrial quality control: a matter of life and death for neurons.
E. I. Rugarli and T. Langer (2012)
EMBO J. 31, 1336-1349
   Abstract »    Full Text »    PDF »
Structures containing Atg9A and the ULK1 complex independently target depolarized mitochondria at initial stages of Parkin-mediated mitophagy.
E. Itakura, C. Kishi-Itakura, I. Koyama-Honda, and N. Mizushima (2012)
J. Cell Sci. 125, 1488-1499
   Abstract »    Full Text »    PDF »
Mitochondrial autophagy in cells with mtDNA mutations results from synergistic loss of transmembrane potential and mTORC1 inhibition.
R. W. Gilkerson, R. L. A. De Vries, P. Lebot, J. D. Wikstrom, E. Torgyekes, O. S. Shirihai, S. Przedborski, and E. A. Schon (2012)
Hum. Mol. Genet. 21, 978-990
   Abstract »    Full Text »    PDF »
Parkin interacts with Klokin1 for mitochondrial import and maintenance of membrane potential.
Y. Kuroda, W. Sako, S. Goto, T. Sawada, D. Uchida, Y. Izumi, T. Takahashi, N. Kagawa, M. Matsumoto, M. Matsumoto, et al. (2012)
Hum. Mol. Genet. 21, 991-1003
   Abstract »    Full Text »    PDF »
PINK1- and Parkin-mediated mitophagy at a glance.
S. M. Jin and R. J. Youle (2012)
J. Cell Sci. 125, 795-799
   Full Text »    PDF »
Mitochondria and cell signalling.
S. W. G. Tait and D. R. Green (2012)
J. Cell Sci. 125, 807-815
   Abstract »    Full Text »    PDF »
Mitochondrial Biology and Parkinson's Disease.
C. Perier and M. Vila (2012)
Cold Spring Harb Perspect Med 2, a009332
   Abstract »    Full Text »    PDF »
Mitophagy Plays an Essential Role in Reducing Mitochondrial Production of Reactive Oxygen Species and Mutation of Mitochondrial DNA by Maintaining Mitochondrial Quantity and Quality in Yeast.
Y. Kurihara, T. Kanki, Y. Aoki, Y. Hirota, T. Saigusa, T. Uchiumi, and D. Kang (2012)
J. Biol. Chem. 287, 3265-3272
   Abstract »    Full Text »    PDF »
Cell metabolism affects selective vulnerability in PINK1-associated Parkinson's disease.
Z. Yao, S. Gandhi, V. S. Burchell, H. Plun-Favreau, N. W. Wood, and A. Y. Abramov (2011)
J. Cell Sci. 124, 4194-4202
   Abstract »    Full Text »    PDF »
Discovery of catalytically active orthologues of the Parkinson's disease kinase PINK1: analysis of substrate specificity and impact of mutations.
H. I. Woodroof, J. H. Pogson, M. Begley, L. C. Cantley, M. Deak, D. G. Campbell, D. M. F. van Aalten, A. J. Whitworth, D. R. Alessi, and M. M. K. Muqit (2011)
Open Bio 1, 110012
   Abstract »    Full Text »    PDF »
What Genetics Tells us About the Causes and Mechanisms of Parkinson's Disease.
O. Corti, S. Lesage, and A. Brice (2011)
Physiol Rev 91, 1161-1218
   Abstract »    Full Text »    PDF »
p62/SQSTM1 in autophagic clearance of a non-ubiquitylated substrate.
Y. Watanabe and M. Tanaka (2011)
J. Cell Sci. 124, 2692-2701
   Abstract »    Full Text »    PDF »
Pink1 regulates the oxidative phosphorylation machinery via mitochondrial fission.
W. Liu, R. Acin-Perez, K. D. Geghman, G. Manfredi, B. Lu, and C. Li (2011)
PNAS 108, 12920-12924
   Abstract »    Full Text »    PDF »
Impaired mitochondrial transport and Parkin-independent degeneration of respiratory chain-deficient dopamine neurons in vivo.
F. H. Sterky, S. Lee, R. Wibom, L. Olson, and N.-G. Larsson (2011)
PNAS 108, 12937-12942
   Abstract »    Full Text »    PDF »
Parkin Interacts with Ambra1 to Induce Mitophagy.
C. Van Humbeeck, T. Cornelissen, H. Hofkens, W. Mandemakers, K. Gevaert, B. De Strooper, and W. Vandenberghe (2011)
J. Neurosci. 31, 10249-10261
   Abstract »    Full Text »    PDF »
Direct Membrane Association Drives Mitochondrial Fission by the Parkinson Disease-associated Protein {alpha}-Synuclein.
K. Nakamura, V. M. Nemani, F. Azarbal, G. Skibinski, J. M. Levy, K. Egami, L. Munishkina, J. Zhang, B. Gardner, J. Wakabayashi, et al. (2011)
J. Biol. Chem. 286, 20710-20726
   Abstract »    Full Text »    PDF »
Parkin Mediates Proteasome-dependent Protein Degradation and Rupture of the Outer Mitochondrial Membrane.
S. R. Yoshii, C. Kishi, N. Ishihara, and N. Mizushima (2011)
J. Biol. Chem. 286, 19630-19640
   Abstract »    Full Text »    PDF »
Mitochondria regulate autophagy by conserved signalling pathways.
M. Graef and J. Nunnari (2011)
EMBO J. 30, 2101-2114
   Abstract »    Full Text »    PDF »
Parkin mediates beclin-dependent autophagic clearance of defective mitochondria and ubiquitinated A{beta} in AD models.
P. J. Khandelwal, A. M. Herman, H.-S. Hoe, G. W. Rebeck, and C. E.- H. Moussa (2011)
Hum. Mol. Genet. 20, 2091-2102
   Abstract »    Full Text »    PDF »
Functional alteration of PARL contributes to mitochondrial dysregulation in Parkinson's disease.
G. Shi, J. R. Lee, D. A. Grimes, L. Racacho, D. Ye, H. Yang, O. A. Ross, M. Farrer, G. A. McQuibban, and D. E. Bulman (2011)
Hum. Mol. Genet. 20, 1966-1974
   Abstract »    Full Text »    PDF »
Rac1 Protein Rescues Neurite Retraction Caused by G2019S Leucine-rich Repeat Kinase 2 (LRRK2).
D. Chan, A. Citro, J. M. Cordy, G. C. Shen, and B. Wolozin (2011)
J. Biol. Chem. 286, 16140-16149
   Abstract »    Full Text »    PDF »
Broad activation of the ubiquitin-proteasome system by Parkin is critical for mitophagy.
N. C. Chan, A. M. Salazar, A. H. Pham, M. J. Sweredoski, N. J. Kolawa, R. L. J. Graham, S. Hess, and D. C. Chan (2011)
Hum. Mol. Genet. 20, 1726-1737
   Abstract »    Full Text »    PDF »
Mitochondrial Parkin Recruitment Is Impaired in Neurons Derived from Mutant PINK1 Induced Pluripotent Stem Cells.
P. Seibler, J. Graziotto, H. Jeong, F. Simunovic, C. Klein, and D. Krainc (2011)
J. Neurosci. 31, 5970-5976
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882