Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 107 (16): 7455-7460

Copyright © 2010 by the National Academy of Sciences.


Glutaminase 2, a novel p53 target gene regulating energy metabolism and antioxidant function

Wenwei Hua, Cen Zhanga, Rui Wua, Yvonne Suna, Arnold Levinea,b,1, and Zhaohui Fenga,1

aCancer Institute of New Jersey, University of Medicine and Dentistry of New Jersey, New Brunswick, NJ 08903; and b Institute for Advanced Study, Princeton, NJ 08540

Contributed by Arnold J. Levine, January 28, 2010 (sent for review November 30, 2009)

Abstract: Whereas cell cycle arrest, apoptosis, and senescence are traditionally thought of as the major functions of the tumor suppressor p53, recent studies revealed two unique functions for this protein: p53 regulates cellular energy metabolism and antioxidant defense mechanisms. Here, we identify glutaminase 2 (GLS2) as a previously uncharacterized p53 target gene to mediate these two functions of the p53 protein. GLS2 encodes a mitochondrial glutaminase catalyzing the hydrolysis of glutamine to glutamate. p53 increases the GLS2 expression under both nonstressed and stressed conditions. GLS2 regulates cellular energy metabolism by increasing production of glutamate and {alpha}-ketoglutarate, which in turn results in enhanced mitochondrial respiration and ATP generation. Furthermore, GLS2 regulates antioxidant defense function in cells by increasing reduced glutathione (GSH) levels and decreasing ROS levels, which in turn protects cells from oxidative stress (e.g., H2O2)-induced apoptosis. Consistent with these functions of GLS2, the activation of p53 increases the levels of glutamate and {alpha}-ketoglutarate, mitochondrial respiration rate, and GSH levels and decreases reactive oxygen species (ROS) levels in cells. Furthermore, GLS2 expression is lost or greatly decreased in hepatocellular carcinomas and the overexpression of GLS2 greatly reduced tumor cell colony formation. These results demonstrated that as a unique p53 target gene, GLS2 is a mediator of p53’s role in energy metabolism and antioxidant defense, which can contribute to its role in tumor suppression.

Key Words: reactive oxygen species • oxidative phosphorylation

Author contributions: W.H., A.L., and Z.F. designed research; W.H., C.Z., R.W., Y.S., and Z.F. performed research; W.H., A.L., and Z.F. analyzed data; and W.H., A.L., and Z.F. wrote the paper.

The authors declare no conflict of interest.

This article contains supporting information online at

See Commentary on page 7117.

1To whom correspondence may be addressed. E-mail: alevine{at} or fengzh{at}

Understanding the non-canonical pathways involved in p53-mediated tumor suppression.
K. M. Hager and W. Gu (2014)
Carcinogenesis 35, 740-746
   Abstract »    Full Text »    PDF »
Tumor suppressor p53 and its gain-of-function mutants in cancer.
J. Liu, C. Zhang, and Z. Feng (2014)
Acta Biochim Biophys Sin 46, 170-179
   Abstract »    Full Text »    PDF »
Cross Talk between Cellular Redox Status, Metabolism, and p53 in Neural Stem Cell Biology.
K. Forsberg and S. Di Giovanni (2014)
   Abstract »    Full Text »    PDF »
FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.
H. Yeo, C. A. Lyssiotis, Y. Zhang, H. Ying, J. M. Asara, L. C. Cantley, and J.-H. Paik (2013)
EMBO J. 32, 2589-2602
   Abstract »    Full Text »    PDF »
Cancer Cell Metabolism: One Hallmark, Many Faces.
J. R. Cantor and D. M. Sabatini (2012)
Cancer Discovery 2, 881-898
   Abstract »    Full Text »    PDF »
PTEN, energy metabolism and tumor suppression.
J. Liu and Z. Feng (2012)
Acta Biochim Biophys Sin 44, 629-631
   Full Text »    PDF »
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism.
K. Thangavelu, C. Q. Pan, T. Karlberg, G. Balaji, M. Uttamchandani, V. Suresh, H. Schuler, B. C. Low, and J. Sivaraman (2012)
PNAS 109, 7705-7710
   Abstract »    Full Text »    PDF »
Links between metabolism and cancer.
C. V. Dang (2012)
Genes & Dev. 26, 877-890
   Abstract »    Full Text »    PDF »
The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy.
L. Shen, X. Sun, Z. Fu, G. Yang, J. Li, and L. Yao (2012)
Clin. Cancer Res. 18, 1561-1567
   Abstract »    Full Text »    PDF »
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism.
A. Cassago, A. P. S. Ferreira, I. M. Ferreira, C. Fornezari, E. R. M. Gomes, K. S. Greene, H. M. Pereira, R. C. Garratt, S. M. G. Dias, and A. L. B. Ambrosio (2012)
PNAS 109, 1092-1097
   Abstract »    Full Text »    PDF »
p53 Negatively Regulates Transcription of the Pyruvate Dehydrogenase Kinase Pdk2.
T. Contractor and C. R. Harris (2012)
Cancer Res. 72, 560-567
   Abstract »    Full Text »    PDF »
Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses.
D. Anastasiou, G. Poulogiannis, J. M. Asara, M. B. Boxer, J.-k. Jiang, M. Shen, G. Bellinger, A. T. Sasaki, J. W. Locasale, D. S. Auld, et al. (2011)
Science 334, 1278-1283
   Abstract »    Full Text »    PDF »
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect.
C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang, A. J. Levine, W. Hu, and Z. Feng (2011)
PNAS 108, 16259-16264
   Abstract »    Full Text »    PDF »
Role of Glutamine in Cancer: Therapeutic and Imaging Implications.
K. N. Rajagopalan and R. J. DeBerardinis (2011)
J. Nucl. Med. 52, 1005-1008
   Abstract »    Full Text »    PDF »
Serine/Threonine Kinase 17A Is a Novel p53 Target Gene and Modulator of Cisplatin Toxicity and Reactive Oxygen Species in Testicular Cancer Cells.
P. Mao, M. P. Hever, L. M. Niemaszyk, J. M. Haghkerdar, E. G. Yanco, D. Desai, M. J. Beyrouthy, J. S. Kerley-Hamilton, S. J. Freemantle, and M. J. Spinella (2011)
J. Biol. Chem. 286, 19381-19391
   Abstract »    Full Text »    PDF »
The Role of p53 in Metabolic Regulation.
A. M. Puzio-Kuter (2011)
Genes & Cancer 2, 385-391
   Abstract »    Full Text »    PDF »
The Regulation of Aging and Longevity: A New and Complex Role of p53.
Z. Feng, M. Lin, and R. Wu (2011)
Genes & Cancer 2, 443-452
   Abstract »    Full Text »    PDF »
The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine.
C. Deisenroth and Y. Zhang (2011)
Genes & Cancer 2, 392-403
   Abstract »    Full Text »    PDF »
Tumor suppressor p53 meets microRNAs.
Z. Feng, C. Zhang, R. Wu, and W. Hu (2011)
J Mol Cell Biol 3, 44-50
   Abstract »    Full Text »    PDF »
The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes.
A. J. Levine and A. M. Puzio-Kuter (2010)
Science 330, 1340-1344
   Abstract »    Full Text »    PDF »
Stressin' Sestrins take an aging fight.
A. V. Budanov, J. H. Lee, and M. Karin (2010)
EMBO Mol Med. 2, 388-400
   Abstract »    Full Text »    PDF »
Alternative fuel--another role for p53 in the regulation of metabolism.
K. H. Vousden (2010)
PNAS 107, 7117-7118
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882