Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 107 (16): 7461-7466

Copyright © 2010 by the National Academy of Sciences.


Phosphate-activated glutaminase (GLS2), a p53-inducible regulator of glutamine metabolism and reactive oxygen species

Sawako Suzukia,b,1, Tomoaki Tanakaa,b,1, Masha V. Poyurovskyc, Hidekazu Naganoa,b, Takafumi Mayamaa,b, Shuichi Ohkubod, Maria Lokshinc, Hiroyuki Hosokawae, Toshinori Nakayamae, Yutaka Suzukif, Sumio Suganof, Eiichi Satog, Toshitaka Nagaog, Koutaro Yokotea,b, Ichiro Tatsunoa,b,2, and Carol Privesc,2

aDepartment of Clinical Cell Biology and bDivision of Endocrinology and Metabolism, Chiba University Graduate School of Medicine, Chiba-shi, Chiba 260-8670, Japan; cDepartment of Biological Sciences, Columbia University, New York, NY 10027; dDrug Discovery and Development I, Hanno Research Institute, Taiho Pharmaceutical Co., Ltd., Hanno, Saitama 357-8527, Japan; eDepartment of Immunology, Chiba University Graduate School of Medicine, Chiba-shi, Chiba 260-8670, Japan; fDepartment of Medical Genome Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan; and gDepartment of Anatomic Pathology, Tokyo Medical University, Shinjuku, Tokyo 160-0023, Japan

Contributed by Carol Prives, March 1, 2010 (sent for review January 6, 2010)

Abstract: We identified a p53 target gene, phosphate-activated mitochondrial glutaminase (GLS2), a key enzyme in conversion of glutamine to glutamate, and thereby a regulator of glutathione (GSH) synthesis and energy production. GLS2 expression is induced in response to DNA damage or oxidative stress in a p53-dependent manner, and p53 associates with the GLS2 promoter. Elevated GLS2 facilitates glutamine metabolism and lowers intracellular reactive oxygen species (ROS) levels, resulting in an overall decrease in DNA oxidation as determined by measurement of 8-OH-dG content in both normal and stressed cells. Further, siRNA down-regulation of either GLS2 or p53 compromises the GSH-dependent antioxidant system and increases intracellular ROS levels. High ROS levels following GLS2 knockdown also coincide with stimulation of p53-induced cell death. We propose that GLS2 control of intracellular ROS levels and the apoptotic response facilitates the ability of p53 to protect cells from accumulation of genomic damage and allows cells to survive after mild and repairable genotoxic stress. Indeed, overexpression of GLS2 reduces the growth of tumor cells and colony formation. Further, compared with normal tissue, GLS2 expression is reduced in liver tumors. Thus, our results provide evidence for a unique metabolic role for p53, linking glutamine metabolism, energy, and ROS homeostasis, which may contribute to p53 tumor suppressor function.

Key Words: glutathione antioxidant • glutaminolysis • tumor suppression • apoptosis

Author contributions: S. Suzuki, T.T., I.T., and C.P. designed research; S. Suzuki, T.T., H.N., T.M., S.O., M.L., H.H., T. Nakayama, Y.S., S. Sugano, E.S., T. Nagao, and K.Y. performed research; H.N., T.M., E.S., and T. Nagao contributed new reagents/analytic tools; T.T., M.V.P., S.O., M.L., Y.S., S. Sugano, K.Y., and C.P. analyzed data; and S. Suzuki, T.T., M.V.P., I.T., and C.P. wrote the paper.

1S. Suzuki and T. Tanaka contributed equally to this work.

The authors declare no conflict of interest.

This article contains supporting information online at

See Commentary on page 7117.

2To whom correspondence may be addressed. E-mail: ichiro-tatsuno{at} or clp3{at}

Inhibition of p53 preserves Parkin-mediated mitophagy and pancreatic {beta}-cell function in diabetes.
A. Hoshino, M. Ariyoshi, Y. Okawa, S. Kaimoto, M. Uchihashi, K. Fukai, E. Iwai-Kanai, K. Ikeda, T. Ueyama, T. Ogata, et al. (2014)
PNAS 111, 3116-3121
   Abstract »    Full Text »    PDF »
Cross Talk between Cellular Redox Status, Metabolism, and p53 in Neural Stem Cell Biology.
K. Forsberg and S. Di Giovanni (2014)
   Abstract »    Full Text »    PDF »
FoxO3 coordinates metabolic pathways to maintain redox balance in neural stem cells.
H. Yeo, C. A. Lyssiotis, Y. Zhang, H. Ying, J. M. Asara, L. C. Cantley, and J.-H. Paik (2013)
EMBO J. 32, 2589-2602
   Abstract »    Full Text »    PDF »
Oxidative stress-induced mutagenesis in single-strand DNA occurs primarily at cytosines and is DNA polymerase zeta-dependent only for adenines and guanines.
N. P. Degtyareva, L. Heyburn, J. Sterling, M. A. Resnick, D. A. Gordenin, and P. W. Doetsch (2013)
Nucleic Acids Res. 41, 8995-9005
   Abstract »    Full Text »    PDF »
Reprogramming of proline and glutamine metabolism contributes to the proliferative and metabolic responses regulated by oncogenic transcription factor c-MYC.
W. Liu, A. Le, C. Hancock, A. N. Lane, C. V. Dang, T. W.- M. Fan, and J. M. Phang (2012)
PNAS 109, 8983-8988
   Abstract »    Full Text »    PDF »
Structural basis for the allosteric inhibitory mechanism of human kidney-type glutaminase (KGA) and its regulation by Raf-Mek-Erk signaling in cancer cell metabolism.
K. Thangavelu, C. Q. Pan, T. Karlberg, G. Balaji, M. Uttamchandani, V. Suresh, H. Schuler, B. C. Low, and J. Sivaraman (2012)
PNAS 109, 7705-7710
   Abstract »    Full Text »    PDF »
Links between metabolism and cancer.
C. V. Dang (2012)
Genes & Dev. 26, 877-890
   Abstract »    Full Text »    PDF »
The Fundamental Role of the p53 Pathway in Tumor Metabolism and Its Implication in Tumor Therapy.
L. Shen, X. Sun, Z. Fu, G. Yang, J. Li, and L. Yao (2012)
Clin. Cancer Res. 18, 1561-1567
   Abstract »    Full Text »    PDF »
Mitochondrial localization and structure-based phosphate activation mechanism of Glutaminase C with implications for cancer metabolism.
A. Cassago, A. P. S. Ferreira, I. M. Ferreira, C. Fornezari, E. R. M. Gomes, K. S. Greene, H. M. Pereira, R. C. Garratt, S. M. G. Dias, and A. L. B. Ambrosio (2012)
PNAS 109, 1092-1097
   Abstract »    Full Text »    PDF »
Parkin, a p53 target gene, mediates the role of p53 in glucose metabolism and the Warburg effect.
C. Zhang, M. Lin, R. Wu, X. Wang, B. Yang, A. J. Levine, W. Hu, and Z. Feng (2011)
PNAS 108, 16259-16264
   Abstract »    Full Text »    PDF »
Serine/Threonine Kinase 17A Is a Novel p53 Target Gene and Modulator of Cisplatin Toxicity and Reactive Oxygen Species in Testicular Cancer Cells.
P. Mao, M. P. Hever, L. M. Niemaszyk, J. M. Haghkerdar, E. G. Yanco, D. Desai, M. J. Beyrouthy, J. S. Kerley-Hamilton, S. J. Freemantle, and M. J. Spinella (2011)
J. Biol. Chem. 286, 19381-19391
   Abstract »    Full Text »    PDF »
The Role of p53 in Metabolic Regulation.
A. M. Puzio-Kuter (2011)
Genes & Cancer 2, 385-391
   Abstract »    Full Text »    PDF »
The Regulation of Aging and Longevity: A New and Complex Role of p53.
Z. Feng, M. Lin, and R. Wu (2011)
Genes & Cancer 2, 443-452
   Abstract »    Full Text »    PDF »
The Ribosomal Protein-Mdm2-p53 Pathway and Energy Metabolism: Bridging the Gap between Feast and Famine.
C. Deisenroth and Y. Zhang (2011)
Genes & Cancer 2, 392-403
   Abstract »    Full Text »    PDF »
The MMSET histone methyl transferase switches global histone methylation and alters gene expression in t(4;14) multiple myeloma cells.
E. Martinez-Garcia, R. Popovic, D.-J. Min, S. M. M. Sweet, P. M. Thomas, L. Zamdborg, A. Heffner, C. Will, L. Lamy, L. M. Staudt, et al. (2011)
Blood 117, 211-220
   Abstract »    Full Text »    PDF »
Cancer Cell Metabolism.
R. A. Cairns, I. Harris, S. McCracken, and T. W. Mak (2011)
Cold Spring Harb Symp Quant Biol 76, 299-311
   Abstract »    Full Text »    PDF »
The Control of the Metabolic Switch in Cancers by Oncogenes and Tumor Suppressor Genes.
A. J. Levine and A. M. Puzio-Kuter (2010)
Science 330, 1340-1344
   Abstract »    Full Text »    PDF »
Alternative fuel--another role for p53 in the regulation of metabolism.
K. H. Vousden (2010)
PNAS 107, 7117-7118
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882