Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 107 (19): 8788-8793

Copyright © 2010 by the National Academy of Sciences.


Mitochondrial metabolism and ROS generation are essential for Kras-mediated tumorigenicity

Frank Weinberga, Robert Hamanakaa, William W. Wheatona, Samuel Weinberga, Joy Josephb, Marcos Lopezb, Balaraman Kalyanaramanb, Gökhan M. Mutlua, G. R. Scott Budingera, and Navdeep S. Chandela,c,d,1

aDivision of Pulmonary and Critical Care, Department of Medicine, cRobert H. Lurie Comprehensive Cancer Center, and dDepartment of Cell and Molecular Biology, Northwestern University Medical School Chicago, IL 60611; and bDepartment of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI 53226

Edited by Lewis Clayton Cantley, Harvard Medical School, Boston, MA, and approved March 31, 2010 (received for review March 17, 2010)

Abstract: Otto Warburg's theory on the origins of cancer postulates that tumor cells have defects in mitochondrial oxidative phosphorylation and therefore rely on high levels of aerobic glycolysis as the major source of ATP to fuel cellular proliferation (the Warburg effect). This is in contrast to normal cells, which primarily utilize oxidative phosphorylation for growth and survival. Here we report that the major function of glucose metabolism for Kras-induced anchorage-independent growth, a hallmark of transformed cells, is to support the pentose phosphate pathway. The major function of glycolytic ATP is to support growth under hypoxic conditions. Glutamine conversion into the tricarboxylic acid cycle intermediate alpha-ketoglutarate through glutaminase and alanine aminotransferase is essential for Kras-induced anchorage-independent growth. Mitochondrial metabolism allows for the generation of reactive oxygen species (ROS) which are required for Kras-induced anchorage-independent growth through regulation of the ERK MAPK signaling pathway. We show that the major source of ROS generation required for anchorage-independent growth is the Qo site of mitochondrial complex III. Furthermore, disruption of mitochondrial function by loss of the mitochondrial transcription factor A (TFAM) gene reduced tumorigenesis in an oncogenic Kras-driven mouse model of lung cancer. These results demonstrate that mitochondrial metabolism and mitochondrial ROS generation are essential for Kras-induced cell proliferation and tumorigenesis.

Key Words: Warburg Effect • glutamine • glycolysis • lung cancer • complex III

Freely available online through the PNAS open access option.

Author contributions: F.W., R.H., B.K., G.M.M., G.R.S.B., and N.S.C. designed research; F.W., R.H., W.W.W., S.W., and N.S.C. performed research; J.J., M.L., and B.K. contributed new reagents/analytic tools; F.W., R.H., G.M.M., G.R.S.B., and N.S.C. analyzed data; and F.W., R.H., G.R.S.B., and N.S.C. wrote the paper.

The authors declare no conflict of interest.

This article is a PNAS Direct Submission.

This article contains supporting information online at

1To whom correspondence should be addressed. Email: nav{at}

Oncogenic K-Ras decouples glucose and glutamine metabolism to support cancer cell growth.
D. Gaglio, C. M. Metallo, P. A. Gameiro, K. Hiller, L. S. Danna, C. Balestrieri, L. Alberghina, G. Stephanopoulos, and F. Chiaradonna (2014)
Mol Syst Biol 7, 523
   Abstract »    Full Text »    PDF »
Cancer as a metabolic disease: implications for novel therapeutics.
T. N. Seyfried, R. E. Flores, A. M. Poff, and D. P. D'Agostino (2014)
Carcinogenesis 35, 515-527
   Abstract »    Full Text »    PDF »
SIRT4 Protein Suppresses Tumor Formation in Genetic Models of Myc-induced B Cell Lymphoma.
S. M. Jeong, A. Lee, J. Lee, and M. C. Haigis (2014)
J. Biol. Chem. 289, 4135-4144
   Abstract »    Full Text »    PDF »
Long-term effects of carbon containing engineered nanomaterials and asbestos in the lung: one year postexposure comparisons.
A. A. Shvedova, N. Yanamala, E. R. Kisin, A. V. Tkach, A. R. Murray, A. Hubbs, M. M. Chirila, P. Keohavong, L. P. Sycheva, V. E. Kagan, et al. (2014)
Am J Physiol Lung Cell Mol Physiol 306, L170-L182
   Abstract »    Full Text »    PDF »
Mitochondrial DNA Damage Is Uncommon in Cancer but Can Promote Aggressive Behaviour.
B. D. MAYBURY (2013)
Anticancer Res 33, 3543-3552
   Abstract »    Full Text »    PDF »
Phosphatase and Tensin Homolog Deleted on Chromosome 10 (PTEN) Signaling Regulates Mitochondrial Biogenesis and Respiration via Estrogen-related Receptor {alpha} (ERR{alpha}).
Y. Li, L. He, N. Zeng, D. Sahu, E. Cadenas, C. Shearn, W. Li, and B. L. Stiles (2013)
J. Biol. Chem. 288, 25007-25024
   Abstract »    Full Text »    PDF »
MYC inhibition induces metabolic changes leading to accumulation of lipid droplets in tumor cells.
H. Zirath, A. Frenzel, G. Oliynyk, L. Segerstrom, U. K. Westermark, K. Larsson, M. Munksgaard Persson, K. Hultenby, J. Lehtio, C. Einvik, et al. (2013)
PNAS 110, 10258-10263
   Abstract »    Full Text »    PDF »
Deregulated G1-S control and energy stress contribute to the synthetic-lethal interactions between inactivation of RB and TSC1 or TSC2.
G. M. Gordon, T. Zhang, J. Zhao, and W. Du (2013)
J. Cell Sci. 126, 2004-2013
   Abstract »    Full Text »    PDF »
Proliferation-Independent Control of Tumor Glycolysis by PDGFR-Mediated AKT Activation.
C. Ran, H. Liu, Y. Hitoshi, and M. A. Israel (2013)
Cancer Res. 73, 1831-1843
   Abstract »    Full Text »    PDF »
Mitochondrial Reactive Oxygen Species Promote Epidermal Differentiation and Hair Follicle Development.
R. B. Hamanaka, A. Glasauer, P. Hoover, S. Yang, H. Blatt, A. R. Mullen, S. Getsios, C. J. Gottardi, R. J. DeBerardinis, R. M. Lavker, et al. (2013)
Science Signaling 6, ra8
   Abstract »    Full Text »    PDF »
SLC1A5 Mediates Glutamine Transport Required for Lung Cancer Cell Growth and Survival.
M. Hassanein, M. D. Hoeksema, M. Shiota, J. Qian, B. K. Harris, H. Chen, J. E. Clark, W. E. Alborn, R. Eisenberg, and P. P. Massion (2013)
Clin. Cancer Res. 19, 560-570
   Abstract »    Full Text »    PDF »
Mitochondrial Reactive Oxygen Species Regulate Transforming Growth Factor-{beta} Signaling.
M. Jain, S. Rivera, E. A. Monclus, L. Synenki, A. Zirk, J. Eisenbart, C. Feghali-Bostwick, G. M. Mutlu, G. R. S. Budinger, and N. S. Chandel (2013)
J. Biol. Chem. 288, 770-777
   Abstract »    Full Text »    PDF »
Mitochondrial hyperfusion induced by loss of the fission protein Drp1 causes ATM-dependent G2/M arrest and aneuploidy through DNA replication stress.
W. Qian, S. Choi, G. A. Gibson, S. C. Watkins, C. J. Bakkenist, and B. Van Houten (2012)
J. Cell Sci. 125, 5745-5757
   Abstract »    Full Text »    PDF »
Prolonged Production of Reactive Oxygen Species in Response to B Cell Receptor Stimulation Promotes B Cell Activation and Proliferation.
M. L. Wheeler and A. L. DeFranco (2012)
J. Immunol. 189, 4405-4416
   Abstract »    Full Text »    PDF »
Annexin A2 Silencing Induces G2 Arrest of Non-small Cell Lung Cancer Cells through p53-dependent and -independent Mechanisms.
C.-Y. Wang, C.-L. Chen, Y.-L. Tseng, Y.-T. Fang, Y.-S. Lin, W.-C. Su, C.-C. Chen, K.-C. Chang, Y.-C. Wang, and C.-F. Lin (2012)
J. Biol. Chem. 287, 32512-32524
   Abstract »    Full Text »    PDF »
Conceptual Framework for Cutting the Pancreatic Cancer Fuel Supply.
A. Le, N. V. Rajeshkumar, A. Maitra, and C. V. Dang (2012)
Clin. Cancer Res. 18, 4285-4290
   Abstract »    Full Text »    PDF »
MicroRNA-31 targets FIH-1 to positively regulate corneal epithelial glycogen metabolism.
H. Peng, R. B. Hamanaka, J. Katsnelson, L.-L. Hao, W. Yang, N. S. Chandel, and R. M. Lavker (2012)
FASEB J 26, 3140-3147
   Abstract »    Full Text »    PDF »
Mitochondria-Targeted Drugs Synergize with 2-Deoxyglucose to Trigger Breast Cancer Cell Death.
G. Cheng, J. Zielonka, B. P. Dranka, D. McAllister, A. C. Mackinnon Jr, J. Joseph, and B. Kalyanaraman (2012)
Cancer Res. 72, 2634-2644
   Abstract »    Full Text »    PDF »
Relationship between 18F-Fluorodeoxyglucose Accumulation and KRAS/BRAF Mutations in Colorectal Cancer.
K. Kawada, Y. Nakamoto, M. Kawada, K. Hida, T. Matsumoto, T. Murakami, S. Hasegawa, K. Togashi, and Y. Sakai (2012)
Clin. Cancer Res. 18, 1696-1703
   Abstract »    Full Text »    PDF »
EphA2/Ephrin-A1 Signaling Complexes Restrict Corneal Epithelial Cell Migration.
N. Kaplan, A. Fatima, H. Peng, P. J. Bryar, R. M. Lavker, and S. Getsios (2012)
Invest. Ophthalmol. Vis. Sci. 53, 936-945
   Abstract »    Full Text »    PDF »
The role of nuclear lamin B1 in cell proliferation and senescence.
T. Shimi, V. Butin-Israeli, S. A. Adam, R. B. Hamanaka, A. E. Goldman, C. A. Lucas, D. K. Shumaker, S. T. Kosak, N. S. Chandel, and R. D. Goldman (2011)
Genes & Dev. 25, 2579-2593
   Abstract »    Full Text »    PDF »
Comparative Metabolic Flux Profiling of Melanoma Cell Lines: BEYOND THE WARBURG EFFECT.
D. A. Scott, A. D. Richardson, F. V. Filipp, C. A. Knutzen, G. G. Chiang, Z. A. Ronai, A. L. Osterman, and J. W. Smith (2011)
J. Biol. Chem. 286, 42626-42634
   Abstract »    Full Text »    PDF »
Inhibition of Pyruvate Kinase M2 by Reactive Oxygen Species Contributes to Cellular Antioxidant Responses.
D. Anastasiou, G. Poulogiannis, J. M. Asara, M. B. Boxer, J.-k. Jiang, M. Shen, G. Bellinger, A. T. Sasaki, J. W. Locasale, D. S. Auld, et al. (2011)
Science 334, 1278-1283
   Abstract »    Full Text »    PDF »
Mitochondrial respiratory complex I dysfunction promotes tumorigenesis through ROS alteration and AKT activation.
L. K. Sharma, H. Fang, J. Liu, R. Vartak, J. Deng, and Y. Bai (2011)
Hum. Mol. Genet. 20, 4605-4616
   Abstract »    Full Text »    PDF »
PGC1{alpha} Promotes Tumor Growth by Inducing Gene Expression Programs Supporting Lipogenesis.
K. Bhalla, B. J. Hwang, R. E. Dewi, L. Ou, W. Twaddel, H.-b. Fang, S. B. Vafai, F. Vazquez, P. Puigserver, L. Boros, et al. (2011)
Cancer Res. 71, 6888-6898
   Abstract »    Full Text »    PDF »
Elevated CO2 Levels Cause Mitochondrial Dysfunction and Impair Cell Proliferation.
C. U. Vohwinkel, E. Lecuona, H. Sun, N. Sommer, I. Vadasz, N. S. Chandel, and J. I. Sznajder (2011)
J. Biol. Chem. 286, 37067-37076
   Abstract »    Full Text »    PDF »
The dynamic nature of autophagy in cancer.
A. C. Kimmelman (2011)
Genes & Dev. 25, 1999-2010
   Abstract »    Full Text »    PDF »
Redox Regulates Mammalian Target of Rapamycin Complex 1 (mTORC1) Activity by Modulating the TSC1/TSC2-Rheb GTPase Pathway.
S. Yoshida, S. Hong, T. Suzuki, S. Nada, A. M. Mannan, J. Wang, M. Okada, K.-L. Guan, and K. Inoki (2011)
J. Biol. Chem. 286, 32651-32660
   Abstract »    Full Text »    PDF »
Lung-specific loss of the laminin {alpha}3 subunit confers resistance to mechanical injury.
D. Urich, J. L. Eisenberg, K. J. Hamill, D. Takawira, S. E. Chiarella, S. Soberanes, A. Gonzalez, F. Koentgen, T. Manghi, S. B. Hopkinson, et al. (2011)
J. Cell Sci. 124, 2927-2937
   Abstract »    Full Text »    PDF »
Erk regulation of pyruvate dehydrogenase flux through PDK4 modulates cell proliferation.
A. R. Grassian, C. M. Metallo, J. L. Coloff, G. Stephanopoulos, and J. S. Brugge (2011)
Genes & Dev. 25, 1716-1733
   Abstract »    Full Text »    PDF »
Kinase Suppressor of Ras 1 (KSR1) Regulates PGC1{alpha} and Estrogen-Related Receptor {alpha} To Promote Oncogenic Ras-Dependent Anchorage-Independent Growth.
K. W. Fisher, B. Das, R. L. Kortum, O. V. Chaika, and R. E. Lewis (2011)
Mol. Cell. Biol. 31, 2453-2461
   Abstract »    Full Text »    PDF »
Selective killing of K-ras mutant cancer cells by small molecule inducers of oxidative stress.
A. T. Shaw, M. M. Winslow, M. Magendantz, C. Ouyang, J. Dowdle, A. Subramanian, T. A. Lewis, R. L. Maglathin, N. Tolliday, and T. Jacks (2011)
PNAS 108, 8773-8778
   Abstract »    Full Text »    PDF »
Receptor Recognition of Damage/Danger Associated Molecular Pattern Molecules, Stress Signals, and HMGB1.
M. T. Lotze, W. Buchser, D. Tang, X. Liang, and H. J. Zeh (2011)
Am. Assoc. Cancer Res. Educ. Book 2011, 141-147
   Full Text »    PDF »
Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis.
J. Y. Guo, H.-Y. Chen, R. Mathew, J. Fan, A. M. Strohecker, G. Karsli-Uzunbas, J. J. Kamphorst, G. Chen, J. M. S. Lemons, V. Karantza, et al. (2011)
Genes & Dev. 25, 460-470
   Abstract »    Full Text »    PDF »
Drosophila orthologue of WWOX, the chromosomal fragile site FRA16D tumour suppressor gene, functions in aerobic metabolism and regulates reactive oxygen species.
L. V. O'Keefe, A. Colella, S. Dayan, Q. Chen, A. Choo, R. Jacob, G. Price, D. Venter, and R. I. Richards (2011)
Hum. Mol. Genet. 20, 497-509
   Abstract »    Full Text »    PDF »
Metabolism strikes back: metabolic flux regulates cell signaling.
C. M. Metallo and M. G. Vander Heiden (2010)
Genes & Dev. 24, 2717-2722
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882