Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (18): 10284-10289

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / IMMUNOLOGY

Cell adhesion regulates gene expression at translational checkpoints in human myeloid leukocytes

Tracey S. Mahoney*, Andrew S. Weyrich*,{dagger}, Dan A. Dixon*,{ddagger},§, Thomas McIntyre*,{dagger}, Stephen M. Prescott{dagger},{ddagger},§, and Guy A. Zimmerman*,{dagger}

*The Eccles Program in Human Molecular Biology and Genetics, {ddagger}The Huntsman Cancer Institute, and Departments of {dagger}Internal Medicine and Experimental Pathology and §Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84112

Received for publication April 24, 2001.

Abstract: Engagement of adhesion molecules on monocytes and other myeloid leukocytes, which are effector cells of the innate immune system, not only tethers the leukocytes in place but also transmits outside-in signals that induce functional changes and alter gene expression. We found that a subset of mRNAs that are induced or amplified by adhesion of human monocytes to P-selectin via its surface ligand, P-selectin glycoprotein 1, have characteristics that suggest specialized translational control. One of these codes for urokinase plasminogen activator receptor (UPAR), a critical surface protease receptor and regulator of cell adhesion and migration. Although UPAR transcripts are induced by adhesion, rapid synthesis of the protein uses constitutive mRNA without a requirement for new transcription and is regulated by mammalian target of rapamycin, demonstrating new biologic roles for the signal-dependent translation pathway controlled by this intracellular kinase. The synthesis of UPAR in monocytic cells is also regulated by eukaryotic translation initiation factor 4E, a second key translational checkpoint, and phosphorylation of eukaryotic translation initiation factor 4E is induced by adhesion of monocytes to P-selectin. Translationally controlled display of UPAR by monocytes confers recognition of the matrix protein, vitronectin. Adhesion-dependent signaling from the plasma membrane to translational checkpoints represents a previously unrecognized mechanism for regulating surface phenotype that may be particularly important for myeloid leukocytes and other cells that are specialized for rapid inflammatory and vascular responses.


To whom reprint requests should be addressed. E-mail: guy.zimmerman{at}hmbg.utah.edu.

Edited by Richard O. Hynes, Massachusetts Institute of Technology, Cambridge, MA, and approved June 27, 2001

This paper was submitted directly (Track II) to the PNAS office.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Platelets as Cellular Effectors of Inflammation in Vascular Diseases.
M. T. Rondina, A. S. Weyrich, and G. A. Zimmerman (2013)
Circ. Res. 112, 1506-1519
   Abstract »    Full Text »    PDF »
Regulation of u-PAR gene expression by H2A.Z is modulated by the MEK-ERK/AP-1 pathway.
S. Chauhan and D. D. Boyd (2012)
Nucleic Acids Res. 40, 600-613
   Abstract »    Full Text »    PDF »
Suppression of the uPAR-uPA System Retards Angiogenesis, Invasion, and In Vivo Tumor Development in Pancreatic Cancer Cells.
B. Gorantla, S. Asuthkar, J. S. Rao, J. Patel, and C. S. Gondi (2011)
Mol. Cancer Res. 9, 377-389
   Abstract »    Full Text »    PDF »
E-selectin engages PSGL-1 and CD44 through a common signaling pathway to induce integrin {alpha}L{beta}2-mediated slow leukocyte rolling.
T. Yago, B. Shao, J. J. Miner, L. Yao, A. G. Klopocki, K. Maeda, K. M. Coggeshall, and R. P. McEver (2010)
Blood 116, 485-494
   Abstract »    Full Text »    PDF »
Translation Control: A Multifaceted Regulator of Inflammatory Response.
B. Mazumder, X. Li, and S. Barik (2010)
J. Immunol. 184, 3311-3319
   Abstract »    Full Text »    PDF »
Transmigration across activated endothelium induces transcriptional changes, inhibits apoptosis, and decreases antimicrobial protein expression in human monocytes.
M. R. Williams, Y. Sakurai, S. M. Zughaier, S. G. Eskin, and L. V. McIntire (2009)
J. Leukoc. Biol. 86, 1331-1343
   Abstract »    Full Text »    PDF »
Selectin-mediated activation of endothelial cells induces expression of CCL5 and promotes metastasis through recruitment of monocytes.
H. Laubli, K.-S. Spanaus, and L. Borsig (2009)
Blood 114, 4583-4591
   Abstract »    Full Text »    PDF »
Molecular and functional interactions among monocytes, platelets, and endothelial cells and their relevance for cardiovascular diseases.
J. M. van Gils, J. J. Zwaginga, and P. L. Hordijk (2009)
J. Leukoc. Biol. 85, 195-204
   Abstract »    Full Text »    PDF »
Identification of Diagnostic Biomarkers for Infection in Premature Neonates.
S. F. Kingsmore, N. Kennedy, H. L. Halliday, J. C. Van Velkinburgh, S. Zhong, V. Gabriel, J. Grant, W. D. Beavis, V. T. Tchernev, L. Perlee, et al. (2008)
Mol. Cell. Proteomics 7, 1863-1875
   Abstract »    Full Text »    PDF »
The Previously Undescribed ZKSCAN3 (ZNF306) Is a Novel "Driver" of Colorectal Cancer Progression.
L. Yang, S. R. Hamilton, A. Sood, T. Kuwai, L. Ellis, A. Sanguino, G. Lopez-Berestein, and D. D. Boyd (2008)
Cancer Res. 68, 4321-4330
   Abstract »    Full Text »    PDF »
Signal-Dependent Protein Synthesis by Activated Platelets: New Pathways to Altered Phenotype and Function.
G. A. Zimmerman and A. S. Weyrich (2008)
Arterioscler Thromb Vasc Biol 28, s17-s24
   Abstract »    Full Text »    PDF »
Platelets: Inflammatory Firebugs of Vascular Walls.
A. E. May, P. Seizer, and M. Gawaz (2008)
Arterioscler Thromb Vasc Biol 28, s5-s10
   Abstract »    Full Text »    PDF »
Leptin Induces Macrophage Lipid Body Formation by a Phosphatidylinositol 3-Kinase- and Mammalian Target of Rapamycin-dependent Mechanism.
C. M. Maya-Monteiro, P. E. Almeida, H. D'Avila, A. S. Martins, A. P. Rezende, H. Castro-Faria-Neto, and P. T. Bozza (2008)
J. Biol. Chem. 283, 2203-2210
   Abstract »    Full Text »    PDF »
mTOR-dependent synthesis of Bcl-3 controls the retraction of fibrin clots by activated human platelets.
A. S. Weyrich, M. M. Denis, H. Schwertz, N. D. Tolley, J. Foulks, E. Spencer, L. W. Kraiss, K. H. Albertine, T. M. McIntyre, and G. A. Zimmerman (2007)
Blood 109, 1975-1983
   Abstract »    Full Text »    PDF »
PSGL-1 and mTOR regulate translation of ROCK-1 and physiological functions of macrophages.
R. Fox, T. Q. Nhan, G. L. Law, D. R. Morris, W. C. Liles, and S. M. Schwartz (2007)
EMBO J. 26, 505-515
   Abstract »    Full Text »    PDF »
Plasticity in Urokinase-Type Plasminogen Activator Receptor (uPAR) Display in Colon Cancer Yields Metastable Subpopulations Oscillating in Cell Surface uPAR Density--Implications in Tumor Progression.
L. Yang, H. Avila, H. Wang, J. Trevino, G. E. Gallick, Y. Kitadai, T. Sasaki, and D. D. Boyd (2006)
Cancer Res. 66, 7957-7967
   Abstract »    Full Text »    PDF »
Activated Polymorphonuclear Leukocytes Rapidly Synthesize Retinoic Acid Receptor-{alpha}: A Mechanism for Translational Control of Transcriptional Events.
C. C. Yost, M. M. Denis, S. Lindemann, F. J. Rubner, G. K. Marathe, M. Buerke, T. M. McIntyre, A. S. Weyrich, and G. A. Zimmerman (2004)
J. Exp. Med. 200, 671-680
   Abstract »    Full Text »    PDF »
P-selectin inhibition suppresses muscle regeneration following injury.
W. Baker, B. A. St. P. Schneider, A. Kulkarni, G. Sloan, R. Schaub, J. Sypek, and J. G. Cannon (2004)
J. Leukoc. Biol. 76, 352-358
   Abstract »    Full Text »    PDF »
The Kruppel-like KLF4 Transcription Factor, a Novel Regulator of Urokinase Receptor Expression, Drives Synthesis of This Binding Site in Colonic Crypt Luminal Surface Epithelial Cells.
H. Wang, L. Yang, M. S. Jamaluddin, and D. D. Boyd (2004)
J. Biol. Chem. 279, 22674-22683
   Abstract »    Full Text »    PDF »
Neutrophils alter the inflammatory milieu by signal-dependent translation of constitutive messenger RNAs.
S. W. Lindemann, C. C. Yost, M. M. Denis, T. M. McIntyre, A. S. Weyrich, and G. A. Zimmerman (2004)
PNAS 101, 7076-7081
   Abstract »    Full Text »    PDF »
Cyclooxygenase-2 Expression and Inhibition in Atherothrombosis.
F. Cipollone, B. Rocca, and C. Patrono (2004)
Arterioscler Thromb Vasc Biol 24, 246-255
   Abstract »    Full Text »    PDF »
P-Selectin Enhances Generation of CD14+CD16+ Dendritic-Like Cells and Inhibits Macrophage Maturation from Human Peripheral Blood Monocytes.
G. Li, Y.-J. Kim, C. Mantel, and H. E. Broxmeyer (2003)
J. Immunol. 171, 669-677
   Abstract »    Full Text »    PDF »
Severely reduced neutrophil adhesion and impaired host defense against fecal and commensal bacteria in CD18-/-P-selectin-/- double null mice.
S. B. FORLOW, P. L. FOLEY, and K. LEY (2002)
FASEB J 16, 1488-1496
   Abstract »    Full Text »    PDF »
Platelets, Endothelial Cells, Inflammatory Chemokines, and Restenosis: Complex Signaling in the Vascular Play Book.
A. S. Weyrich, S. M. Prescott, and G. A. Zimmerman (2002)
Circulation 106, 1433-1435
   Full Text »    PDF »
Cyclooxygenase-2 Is Induced in Monocytes by Peroxisome Proliferator Activated Receptor {gamma} and Oxidized Alkyl Phospholipids from Oxidized Low Density Lipoprotein.
A. V. Pontsler, A. St. Hilaire, G. K. Marathe, G. A. Zimmerman, and T. M. McIntyre (2002)
J. Biol. Chem. 277, 13029-13036
   Abstract »    Full Text »    PDF »
Two by two: The pairings of P-selectin and P-selectin glycoprotein ligand 1.
G. A. Zimmerman (2001)
PNAS 98, 10023-10024
   Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882