Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 98 (5): 2449-2454

Copyright © 2001 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / CELL BIOLOGY

Activation and targeting of extracellular signal-regulated kinases by β-arrestin scaffolds

Louis M. Luttrell*,{dagger},{ddagger}, Francine L. Roudabush{dagger}, Eric W. Choy{dagger}, William E. Miller§, Michael E. Field{dagger}, Kristen L. Pierce§, and Robert J. Lefkowitz{dagger},§

*The Geriatrics Research, Education and Clinical Center, Durham Veterans Affairs Medical Center, Durham, NC 27705; and The Howard Hughes Medical Institute, and Departments of {dagger}Medicine and §Biochemistry, Box 3821, Duke University Medical Center, Durham, NC 27710

Contributed by Robert J. Lefkowitz

Accepted for publication December 18, 2000.

Abstract: Using both confocal immunofluorescence microscopy and biochemical approaches, we have examined the role of β-arrestins in the activation and targeting of extracellular signal-regulated kinase 2 (ERK2) following stimulation of angiotensin II type 1a receptors (AT1aR). In HEK-293 cells expressing hemagglutinin-tagged AT1aR, angiotensin stimulation triggered β-arrestin-2 binding to the receptor and internalization of AT1aR-β-arrestin complexes. Using red fluorescent protein-tagged ERK2 to track the subcellular distribution of ERK2, we found that angiotensin treatment caused the redistribution of activated ERK2 into endosomal vesicles that also contained AT1aR-β-arrestin complexes. This targeting of ERK2 reflects the formation of multiprotein complexes containing AT1aR, β-arrestin-2, and the component kinases of the ERK cascade, cRaf-1, MEK1, and ERK2. Myc-tagged cRaf-1, MEK1, and green fluorescent protein-tagged ERK2 coprecipitated with Flag-tagged β-arrestin-2 from transfected COS-7 cells. Coprecipitation of cRaf-1 with β-arrestin-2 was independent of MEK1 and ERK2, whereas the coprecipitation of MEK1 and ERK2 with β-arrestin-2 was significantly enhanced in the presence of overexpressed cRaf-1, suggesting that binding of cRaf-1 to β-arrestin facilitates the assembly of a cRaf-1, MEK1, ERK2 complex. The phosphorylation of ERK2 in β-arrestin complexes was markedly enhanced by coexpression of cRaf-1, and this effect is blocked by expression of a catalytically inactive dominant inhibitory mutant of MEK1. Stimulation with angiotensin increased the binding of both cRaf-1 and ERK2 to β-arrestin-2, and the association of β-arrestin-2, cRaf-1, and ERK2 with AT1aR. These data suggest that β-arrestins function both as scaffolds to enhance cRaf-1 and MEK-dependent activation of ERK2, and as targeting proteins that direct activated ERK to specific subcellular locations.


{ddagger} To whom reprint requests should be addressed. E-mail: luttrell{at}receptor-biol.duke.edu.

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Competing G protein-coupled receptor kinases balance G protein and {beta}-arrestin signaling.
D. Heitzler, G. Durand, N. Gallay, A. Rizk, S. Ahn, J. Kim, J. D. Violin, L. Dupuy, C. Gauthier, V. Piketty, et al. (2014)
Mol Syst Biol 8, 590
   Abstract »    Full Text »    PDF »
Negative Impact of {beta}-Arrestin-1 on Post-Myocardial Infarction Heart Failure via Cardiac and Adrenal-Dependent Neurohormonal Mechanisms.
A. Bathgate-Siryk, S. Dabul, K. Pandya, K. Walklett, G. Rengo, A. Cannavo, C. De Lucia, D. Liccardo, E. Gao, D. Leosco, et al. (2014)
Hypertension 63, 404-412
   Abstract »    Full Text »    PDF »
JNK3 Enzyme Binding to Arrestin-3 Differentially Affects the Recruitment of Upstream Mitogen-activated Protein (MAP) Kinase Kinases.
X. Zhan, T. S. Kaoud, S. Kook, K. N. Dalby, and V. V. Gurevich (2013)
J. Biol. Chem. 288, 28535-28547
   Abstract »    Full Text »    PDF »
PAF enhances MMP-2 production in rat aortic VSMCs via a {beta}-arrestin2-dependent ERK signaling pathway.
Y. H. Kim, S. J. Lee, K. W. Seo, J. U. Bae, S. Y. Park, E. K. Kim, S. S. Bae, J. H. Kim, and C. D. Kim (2013)
J. Lipid Res. 54, 2678-2686
   Abstract »    Full Text »    PDF »
{beta}-Arrestins 1 and 2 are critical regulators of inflammation.
H. Fan (2013)
Innate Immunity
   Abstract »    Full Text »    PDF »
Gene Dosage-Dependent Negative Regulatory Role of {beta}-Arrestin-2 in Polymicrobial Infection-Induced Inflammation.
D. Sharma, A. Malik, E. Lee, R. A. Britton, and N. Parameswaran (2013)
Infect. Immun. 81, 3035-3044
   Abstract »    Full Text »    PDF »
Arginine Vasopressin Enhances Cell Survival via a G Protein-Coupled Receptor Kinase 2/{beta}-Arrestin1/Extracellular-Regulated Kinase 1/2-Dependent Pathway in H9c2 Cells.
W. Zhu, D. G. Tilley, V. D. Myers, R. C. Coleman, and A. M. Feldman (2013)
Mol. Pharmacol. 84, 227-235
   Abstract »    Full Text »    PDF »
Distinct Roles of {beta}-Arrestin 1 and {beta}-Arrestin 2 in ORG27569-induced Biased Signaling and Internalization of the Cannabinoid Receptor 1 (CB1).
K. H. Ahn, M. M. Mahmoud, J.-Y. Shim, and D. A. Kendall (2013)
J. Biol. Chem. 288, 9790-9800
   Abstract »    Full Text »    PDF »
Crosstalk between Caveolin-1/Extracellular Signal-regulated Kinase (ERK) and {beta}-Catenin Survival Pathways in Osteocyte Mechanotransduction.
A. R. Gortazar, M. Martin-Millan, B. Bravo, L. I. Plotkin, and T. Bellido (2013)
J. Biol. Chem. 288, 8168-8175
   Abstract »    Full Text »    PDF »
Noncanonical GPCR signaling arising from a PTH receptor-arrestin-G{beta}{gamma} complex.
V. L. Wehbi, H. P. Stevenson, T. N. Feinstein, G. Calero, G. Romero, and J.-P. Vilardaga (2013)
PNAS 110, 1530-1535
   Abstract »    Full Text »    PDF »
GRK2-Mediated Inhibition of Adrenergic and Dopaminergic Signaling in Right Ventricular Hypertrophy: Therapeutic Implications in Pulmonary Hypertension.
L. Piao, Y.-H. Fang, K. S. Parikh, J. J. Ryan, K. M. D'Souza, T. Theccanat, P. T. Toth, J. Pogoriler, J. Paul, B. C. Blaxall, et al. (2012)
Circulation 126, 2859-2869
   Abstract »    Full Text »    PDF »
TRV120027, a Novel {beta}-Arrestin Biased Ligand at the Angiotensin II Type I Receptor, Unloads the Heart and Maintains Renal Function When Added to Furosemide in Experimental Heart Failure.
G. Boerrigter, D. G. Soergel, J. D. Violin, M. W. Lark, and J. C. Burnett Jr (2012)
Circ Heart Fail 5, 627-634
   Abstract »    Full Text »    PDF »
Silent Scaffolds: INHIBITION OF c-Jun N-TERMINAL KINASE 3 ACTIVITY IN CELL BY DOMINANT-NEGATIVE ARRESTIN-3 MUTANT.
M. Breitman, S. Kook, L. E. Gimenez, B. N. Lizama, M. C. Palazzo, E. V. Gurevich, and V. V. Gurevich (2012)
J. Biol. Chem. 287, 19653-19664
   Abstract »    Full Text »    PDF »
Disruption of parathyroid hormone and parathyroid hormone-related peptide receptor phosphorylation prolongs ERK1/2 MAPK activation and enhances c-fos expression.
H. A. Tawfeek and A. B. Abou-Samra (2012)
Am J Physiol Endocrinol Metab 302, E1363-E1372
   Abstract »    Full Text »    PDF »
Heterodimerization of serotonin receptors 5-HT1A and 5-HT7 differentially regulates receptor signalling and trafficking.
U. Renner, A. Zeug, A. Woehler, M. Niebert, A. Dityatev, G. Dityateva, N. Gorinski, D. Guseva, D. Abdel-Galil, M. Frohlich, et al. (2012)
J. Cell Sci. 125, 2486-2499
   Abstract »    Full Text »    PDF »
Engagement of {beta}-arrestin by transactivated insulin-like growth factor receptor is needed for V2 vasopressin receptor-stimulated ERK1/2 activation.
G. Oligny-Longpre, M. Corbani, J. Zhou, M. Hogue, G. Guillon, and M. Bouvier (2012)
PNAS 109, E1028-E1037
   Abstract »    Full Text »    PDF »
Trans-Golgi Network (TGN) as a Regulatory Node for {beta}1-Adrenergic Receptor ({beta}1AR) Down-modulation and Recycling.
S.-B. Cheng and E. J. Filardo (2012)
J. Biol. Chem. 287, 14178-14191
   Abstract »    Full Text »    PDF »
Allosteric Modulator ORG27569 Induces CB1 Cannabinoid Receptor High Affinity Agonist Binding State, Receptor Internalization, and Gi Protein-independent ERK1/2 Kinase Activation.
K. H. Ahn, M. M. Mahmoud, and D. A. Kendall (2012)
J. Biol. Chem. 287, 12070-12082
   Abstract »    Full Text »    PDF »
Fluorescence/Bioluminescence Resonance Energy Transfer Techniques to Study G-Protein-Coupled Receptor Activation and Signaling.
M. J. Lohse, S. Nuber, and C. Hoffmann (2012)
Pharmacol. Rev. 64, 299-336
   Abstract »    Full Text »    PDF »
Novel Roles for the E3 Ubiquitin Ligase Atrophin-interacting Protein 4 and Signal Transduction Adaptor Molecule 1 in G Protein-coupled Receptor Signaling.
R. Malik, U. J. K. Soh, J. Trejo, and A. Marchese (2012)
J. Biol. Chem. 287, 9013-9027
   Abstract »    Full Text »    PDF »
Role of Receptor-attached Phosphates in Binding of Visual and Non-visual Arrestins to G Protein-coupled Receptors.
L. E. Gimenez, S. Kook, S. A. Vishnivetskiy, M. R. Ahmed, E. V. Gurevich, and V. V. Gurevich (2012)
J. Biol. Chem. 287, 9028-9040
   Abstract »    Full Text »    PDF »
Second Extracellular Loop of Human Glucagon-like Peptide-1 Receptor (GLP-1R) Has a Critical Role in GLP-1 Peptide Binding and Receptor Activation.
C. Koole, D. Wootten, J. Simms, L. J. Miller, A. Christopoulos, and P. M. Sexton (2012)
J. Biol. Chem. 287, 3642-3658
   Abstract »    Full Text »    PDF »
Eukaryotic Translation Initiation Factor 3, Subunit a, Regulates the Extracellular Signal-Regulated Kinase Pathway.
T.-R. Xu, R.-F. Lu, D. Romano, A. Pitt, M. D. Houslay, G. Milligan, and W. Kolch (2012)
Mol. Cell. Biol. 32, 88-95
   Abstract »    Full Text »    PDF »
Genome-Wide Association Study among Four Horse Breeds Identifies a Common Haplotype Associated with In Vitro CD3+ T Cell Susceptibility/Resistance to Equine Arteritis Virus Infection.
Y. Y. Go, E. Bailey, D. G. Cook, S. J. Coleman, J. N. MacLeod, K.-C. Chen, P. J. Timoney, and U. B. R. Balasuriya (2011)
J. Virol. 85, 13174-13184
   Abstract »    Full Text »    PDF »
Cardiorenal Actions of TRV120027, a Novel ss-Arrestin-Biased Ligand at the Angiotensin II Type I Receptor, in Healthy and Heart Failure Canines: A Novel Therapeutic Strategy for Acute Heart Failure.
G. Boerrigter, M. W. Lark, E. J. Whalen, D. G. Soergel, J. D. Violin, and J. C. Burnett Jr (2011)
Circ Heart Fail 4, 770-778
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-1 Protein Represses Adipogenesis and Inflammatory Responses through Its Interaction with Peroxisome Proliferator-activated Receptor-{gamma} (PPAR{gamma}).
L.-n. Zhuang, W.-x. Hu, S.-m. Xin, J. Zhao, and G. Pei (2011)
J. Biol. Chem. 286, 28403-28413
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-1 Protein Represses Diet-induced Obesity.
L.-n. Zhuang, W.-x. Hu, M.-l. Zhang, S.-m. Xin, W.-p. Jia, J. Zhao, and G. Pei (2011)
J. Biol. Chem. 286, 28396-28402
   Abstract »    Full Text »    PDF »
Understanding the Effect of Different Assay Formats on Agonist Parameters: A Study Using the {micro}-Opioid Receptor.
S. A. Nickolls, A. Waterfield, R. E. Williams, and R. A. Kinloch (2011)
J Biomol Screen 16, 706-716
   Abstract »    Full Text »    PDF »
Dysfunction of endothelium-dependent relaxation to insulin via PKC-mediated GRK2/Akt activation in aortas of ob/ob mice.
K. Taguchi, T. Kobayashi, T. Matsumoto, and K. Kamata (2011)
Am J Physiol Heart Circ Physiol 301, H571-H583
   Abstract »    Full Text »    PDF »
Biased Ligands for Better Cardiovascular Drugs: Dissecting G-Protein-Coupled Receptor Pharmacology.
S. M. DeWire and J. D. Violin (2011)
Circ. Res. 109, 205-216
   Abstract »    Full Text »    PDF »
G Protein-Dependent and G Protein-Independent Signaling Pathways and Their Impact on Cardiac Function.
D. G. Tilley (2011)
Circ. Res. 109, 217-230
   Abstract »    Full Text »    PDF »
The {beta}-Arrestin Pathway-selective Type 1A Angiotensin Receptor (AT1A) Agonist [Sar1,Ile4,Ile8]Angiotensin II Regulates a Robust G Protein-independent Signaling Network.
R. T. Kendall, E. G. Strungs, S. M. Rachidi, M.-H. Lee, H. M. El-Shewy, D. K. Luttrell, M. G. Janech, and L. M. Luttrell (2011)
J. Biol. Chem. 286, 19880-19891
   Abstract »    Full Text »    PDF »
The ERK Cascade: Distinct Functions within Various Subcellular Organelles.
I. Wortzel and R. Seger (2011)
Genes & Cancer 2, 195-209
   Abstract »    Full Text »    PDF »
Demonstration of Angiotensin II-induced Ras Activation in the trans-Golgi Network and Endoplasmic Reticulum Using Bioluminescence Resonance Energy Transfer-based Biosensors.
A. Balla, L. S. Erdelyi, E. Soltesz-Katona, T. Balla, P. Varnai, and L. Hunyady (2011)
J. Biol. Chem. 286, 5319-5327
   Abstract »    Full Text »    PDF »
Small Ubiquitin-like Modifier Modification of Arrestin-3 Regulates Receptor Trafficking.
D. Wyatt, R. Malik, A. C. Vesecky, and A. Marchese (2011)
J. Biol. Chem. 286, 3884-3893
   Abstract »    Full Text »    PDF »
The Prostaglandin E2 Receptor, EP2, Stimulates Keratinocyte Proliferation in Mouse Skin by G Protein-dependent and {beta}-Arrestin1-dependent Signaling Pathways.
K.-S. Chun, H.-C. Lao, and R. Langenbach (2010)
J. Biol. Chem. 285, 39672-39681
   Abstract »    Full Text »    PDF »
Stimulus-induced uncoupling of extracellular signal-regulated kinase phosphorylation from nuclear localization is dependent on docking domain interactions.
C. J. Caunt and C. A. McArdle (2010)
J. Cell Sci. 123, 4310-4320
   Abstract »    Full Text »    PDF »
Serine 363 of the {delta}-opioid receptor is crucial for adopting distinct pathways to activate ERK1/2 in response to stimulation with different ligands.
C. Xu, M.-H. Hong, L.-S. Zhang, Y.-Y. Hou, Y.-H. Wang, F.-F. Wang, Y.-J. Chen, X.-J. Xu, J. Chen, X. Xie, et al. (2010)
J. Cell Sci. 123, 4259-4270
   Abstract »    Full Text »    PDF »
{beta}-arrestin Kurtz inhibits MAPK and Toll signalling in Drosophila development.
M. Tipping, Y. Kim, P. Kyriakakis, M. Tong, S. Y. Shvartsman, and A. Veraksa (2010)
EMBO J. 29, 3222-3235
   Abstract »    Full Text »    PDF »
The Protective Signaling of Metabotropic Glutamate Receptor 1 Is Mediated by Sustained, {beta}-Arrestin-1-dependent ERK Phosphorylation.
A. C. Emery, S. Pshenichkin, G. R. Takoudjou, E. Grajkowska, B. B. Wolfe, and J. T. Wroblewski (2010)
J. Biol. Chem. 285, 26041-26048
   Abstract »    Full Text »    PDF »
{beta}-Arrestin 2 is required for B1 receptor-dependent post-translational activation of inducible nitric oxide synthase.
F. K. Kuhr, Y. Zhang, V. Brovkovych, and R. A. Skidgel (2010)
FASEB J 24, 2475-2483
   Abstract »    Full Text »    PDF »
Beyond Desensitization: Physiological Relevance of Arrestin-Dependent Signaling.
L. M. Luttrell, D. Gesty-Palmer, and D. R. Sibley (2010)
Pharmacol. Rev. 62, 305-330
   Abstract »    Full Text »    PDF »
Non-visual Arrestins Are Constitutively Associated with the Centrosome and Regulate Centrosome Function.
H. Shankar, A. Michal, R. C. Kern, D. S. Kang, V. V. Gurevich, and J. L. Benovic (2010)
J. Biol. Chem. 285, 8316-8329
   Abstract »    Full Text »    PDF »
Antidepressants Increase {beta}-Arrestin2 Ubiquitinylation and Degradation by the Proteasomal Pathway in C6 Rat Glioma Cells.
M. Golan, G. Schreiber, and S. Avissar (2010)
J. Pharmacol. Exp. Ther. 332, 970-976
   Abstract »    Full Text »    PDF »
GLP-1 Mediates Antiapoptotic Effect by Phosphorylating Bad through a {beta}-Arrestin 1-mediated ERK1/2 Activation in Pancreatic {beta}-Cells.
J. Quoyer, C. Longuet, C. Broca, N. Linck, S. Costes, E. Varin, J. Bockaert, G. Bertrand, and S. Dalle (2010)
J. Biol. Chem. 285, 1989-2002
   Abstract »    Full Text »    PDF »
Arrestin Orchestrates Crosstalk Between G Protein-Coupled Receptors to Modulate the Spatiotemporal Activation of ERK MAPK.
D. Cervantes, C. Crosby, and Y. Xiang (2010)
Circ. Res. 106, 79-88
   Abstract »    Full Text »    PDF »
Endosomes: A legitimate platform for the signaling train.
J. E. Murphy, B. E. Padilla, B. Hasdemir, G. S. Cottrell, and N. W. Bunnett (2009)
PNAS 106, 17615-17622
   Abstract »    Full Text »    PDF »
A {beta}-Arrestin-Biased Agonist of the Parathyroid Hormone Receptor (PTH1R) Promotes Bone Formation Independent of G Protein Activation.
D. Gesty-Palmer, P. Flannery, L. Yuan, L. Corsino, R. Spurney, R. J. Lefkowitz, and L. M. Luttrell (2009)
Science Translational Medicine 1, 1ra1
   Abstract »    Full Text »    PDF »
An arrestin-dependent multi-kinase signaling complex mediates MIP-1{beta}/CCL4 signaling and chemotaxis of primary human macrophages.
R. Cheung, M. Malik, V. Ravyn, B. Tomkowicz, A. Ptasznik, and R. G. Collman (2009)
J. Leukoc. Biol. 86, 833-845
   Abstract »    Full Text »    PDF »
{beta}-arrestin1 phosphorylation by GRK5 regulates G protein-independent 5-HT4 receptor signalling.
G. Barthet, G. Carrat, E. Cassier, B. Barker, F. Gaven, M. Pillot, B. Framery, L. P. Pellissier, J. Augier, D. S. Kang, et al. (2009)
EMBO J. 28, 2706-2718
   Abstract »    Full Text »    PDF »
Activation of Intracellular Signaling Pathways by the Murine Cytomegalovirus G Protein-Coupled Receptor M33 Occurs via PLC-{beta}/PKC-Dependent and -Independent Mechanisms.
J. D. Sherrill, M. P. Stropes, O. D. Schneider, D. E. Koch, F. M. Bittencourt, J. L. C. Miller, and W. E. Miller (2009)
J. Virol. 83, 8141-8152
   Abstract »    Full Text »    PDF »
MAPK signaling pathways in the regulation of hematopoiesis.
C. R. Geest and P. J. Coffer (2009)
J. Leukoc. Biol. 86, 237-250
   Abstract »    Full Text »    PDF »
{beta}-Arrestin Mediates {beta}1-Adrenergic Receptor-Epidermal Growth Factor Receptor Interaction and Downstream Signaling.
D. G. Tilley, I.-M. Kim, P. A. Patel, J. D. Violin, and H. A. Rockman (2009)
J. Biol. Chem. 284, 20375-20386
   Abstract »    Full Text »    PDF »
Angiotensin II-Induced Cyclooxygenase 2 Expression in Rat Aorta Vascular Smooth Muscle Cells Does Not Require Heterotrimeric G Protein Activation.
T. A. Morinelli, R. T. Kendall, L. M. Luttrell, L. P. Walker, and M. E. Ullian (2009)
J. Pharmacol. Exp. Ther. 330, 118-124
   Abstract »    Full Text »    PDF »
KiSS1 Metastasis Suppressor Gene Product Induces Suppression of Tyrosine Kinase Receptor Signaling to Akt, Tumor Necrosis Factor Family Ligand Expression, and Apoptosis.
J.-M. Navenot, N. Fujii, and S. C. Peiper (2009)
Mol. Pharmacol. 75, 1074-1083
   Abstract »    Full Text »    PDF »
MEK1 Binds Directly to {beta}Arrestin1, Influencing Both Its Phosphorylation by ERK and the Timing of Its Isoprenaline-stimulated Internalization.
D. Meng, M. J. Lynch, E. Huston, M. Beyermann, J. Eichhorst, D. R. Adams, E. Klussmann, M. D. Houslay, and G. S. Baillie (2009)
J. Biol. Chem. 284, 11425-11435
   Abstract »    Full Text »    PDF »
An adrenal {beta}-arrestin 1-mediated signaling pathway underlies angiotensin II-induced aldosterone production in vitro and in vivo.
A. Lymperopoulos, G. Rengo, C. Zincarelli, J. Kim, S. Soltys, and W. J. Koch (2009)
PNAS 106, 5825-5830
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-2 Mediates Anti-apoptotic Signaling through Regulation of BAD Phosphorylation.
S. Ahn, J. Kim, M. R. Hara, X.-R. Ren, and R. J. Lefkowitz (2009)
J. Biol. Chem. 284, 8855-8865
   Abstract »    Full Text »    PDF »
How Does Arrestin Assemble MAPKs into a Signaling Complex?.
X. Song, S. Coffa, H. Fu, and V. V. Gurevich (2009)
J. Biol. Chem. 284, 685-695
   Abstract »    Full Text »    PDF »
{beta}-Arrestin Recruitment Assay for the Identification of Agonists of the Sphingosine 1-Phosphate Receptor EDG1.
M. M.C. van Der Lee, M. Bras, C. J. van Koppen, and G. J.R. Zaman (2008)
J Biomol Screen 13, 986-998
   Abstract »    PDF »
Smoothened Signaling in Vertebrates Is Facilitated by a G Protein-coupled Receptor Kinase.
M. Philipp, G. B. Fralish, A. R. Meloni, W. Chen, A. W. MacInnes, L. S. Barak, and M. G. Caron (2008)
Mol. Biol. Cell 19, 5478-5489
   Abstract »    Full Text »    PDF »
{beta}-Blockers alprenolol and carvedilol stimulate {beta}-arrestin-mediated EGFR transactivation.
I.-M. Kim, D. G. Tilley, J. Chen, N. C. Salazar, E. J. Whalen, J. D. Violin, and H. A. Rockman (2008)
PNAS 105, 14555-14560
   Abstract »    Full Text »    PDF »
Site-specific Cleavage of G Protein-coupled Receptor-engaged {beta}-Arrestin: INFLUENCE OF THE AT1 RECEPTOR CONFORMATION ON SCISSILE SITE SELECTION.
C. Lee, S. Bhatt, A. Shukla, R. W. Desnoyer, S. P. Yadav, M. Kim, S.-H. Jang, and S. S. Karnik (2008)
J. Biol. Chem. 283, 21612-21620
   Abstract »    Full Text »    PDF »
Suppressive function of RKTG on chemical carcinogen-induced skin carcinogenesis in mouse.
X. Xie, Y. Zhang, Y. Jiang, W. Liu, H. Ma, Z. Wang, and Y. Chen (2008)
Carcinogenesis 29, 1632-1638
   Abstract »    Full Text »    PDF »
Rich Tapestry of G Protein-Coupled Receptor Signaling and Regulatory Mechanisms.
V. V. Gurevich and E. V. Gurevich (2008)
Mol. Pharmacol. 74, 312-316
   Abstract »    Full Text »    PDF »
Conformational Rearrangements and Signaling Cascades Involved in Ligand-Biased Mitogen-Activated Protein Kinase Signaling through the {beta}1-Adrenergic Receptor.
S. Galandrin, G. Oligny-Longpre, H. Bonin, K. Ogawa, C. Gales, and M. Bouvier (2008)
Mol. Pharmacol. 74, 162-172
   Abstract »    Full Text »    PDF »
{beta}-Arrestin-mediated Signaling Regulates Protein Synthesis.
S. M. DeWire, J. Kim, E. J. Whalen, S. Ahn, M. Chen, and R. J. Lefkowitz (2008)
J. Biol. Chem. 283, 10611-10620
   Abstract »    Full Text »    PDF »
Role of -Arrestin-mediated Desensitization and Signaling in the Control of Angiotensin AT1a Receptor-stimulated Transcription.
M.-H. Lee, H. M. El-Shewy, D. K. Luttrell, and L. M. Luttrell (2008)
J. Biol. Chem. 283, 2088-2097
   Abstract »    Full Text »    PDF »
Agonist-directed signaling of the serotonin 2A receptor depends on {beta}-arrestin-2 interactions in vivo.
C. L. Schmid, K. M. Raehal, and L. M. Bohn (2008)
PNAS 105, 1079-1084
   Abstract »    Full Text »    PDF »
Angiotensin II Activates Extracellular Signal-Regulated Kinase Independently of Receptor Tyrosine Kinases in Renal Smooth Muscle Cells: Implications for Blood Pressure Regulation.
C. S. Escano Jr., L. B. Keever, A. A. Gutweiler, and B. T. Andresen (2008)
J. Pharmacol. Exp. Ther. 324, 34-42
   Abstract »    Full Text »    PDF »
RACK1 Targets the Extracellular Signal-Regulated Kinase/Mitogen-Activated Protein Kinase Pathway To Link Integrin Engagement with Focal Adhesion Disassembly and Cell Motility.
T. Vomastek, M. P. Iwanicki, H.-J. Schaeffer, A. Tarcsafalvi, J. T. Parsons, and M. J. Weber (2007)
Mol. Cell. Biol. 27, 8296-8305
   Abstract »    Full Text »    PDF »
CCR5 signaling through phospholipase D involves p44/42 MAP-kinases and promotes HIV-1 LTR-directed gene expression.
S. Paruch, M. Heinis, J. Lemay, G. Hoeffel, C. Maranon, A. Hosmalin, and A. Perianin (2007)
FASEB J 21, 4038-4046
   Abstract »    Full Text »    PDF »
A unique mechanism of beta-blocker action: Carvedilol stimulates beta-arrestin signaling.
J. W. Wisler, S. M. DeWire, E. J. Whalen, J. D. Violin, M. T. Drake, S. Ahn, S. K. Shenoy, and R. J. Lefkowitz (2007)
PNAS 104, 16657-16662
   Abstract »    Full Text »    PDF »
Ubiquitination of beta-Arrestin Links Seven-transmembrane Receptor Endocytosis and ERK Activation.
S. K. Shenoy, L. S. Barak, K. Xiao, S. Ahn, M. Berthouze, A. K. Shukla, L. M. Luttrell, and R. J. Lefkowitz (2007)
J. Biol. Chem. 282, 29549-29562
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor Receptor-1 Can Function through a G{alpha}q/11-beta-Arrestin-1 Signaling Complex.
Y. Kawamata, T. Imamura, J. L. Babendure, J.-C. Lu, T. Yoshizaki, and J. M. Olefsky (2007)
J. Biol. Chem. 282, 28549-28556
   Abstract »    Full Text »    PDF »
Spatial regulation of Raf kinase signaling by RKTG.
L. Feng, X. Xie, Q. Ding, X. Luo, J. He, F. Fan, W. Liu, Z. Wang, and Y. Chen (2007)
PNAS 104, 14348-14353
   Abstract »    Full Text »    PDF »
A Novel Ligand-independent Function of the Estrogen Receptor Is Essential for Osteocyte and Osteoblast Mechanotransduction.
J. I. Aguirre, L. I. Plotkin, A. R. Gortazar, M. M. Millan, C. A. O'Brien, S. C. Manolagas, and T. Bellido (2007)
J. Biol. Chem. 282, 25501-25508
   Abstract »    Full Text »    PDF »
Receptor heterodimerization leads to a switch in signaling: {beta}-arrestin2-mediated ERK activation by {micro}-{delta} opioid receptor heterodimers.
R. Rozenfeld and L. A. Devi (2007)
FASEB J 21, 2455-2465
   Abstract »    Full Text »    PDF »
The Active Conformation of beta-Arrestin1: DIRECT EVIDENCE FOR THE PHOSPHATE SENSOR IN THE N-DOMAIN AND CONFORMATIONAL DIFFERENCES IN THE ACTIVE STATES OF beta-ARRESTINS1 AND -2.
K. N. Nobles, Z. Guan, K. Xiao, T. G. Oas, and R. J. Lefkowitz (2007)
J. Biol. Chem. 282, 21370-21381
   Abstract »    Full Text »    PDF »
G-protein-coupled receptor expression, function, and signaling in macrophages.
J. Lattin, D. A. Zidar, K. Schroder, S. Kellie, D. A. Hume, and M. J. Sweet (2007)
J. Leukoc. Biol. 82, 16-32
   Abstract »    Full Text »    PDF »
Selective role for RGS12 as a Ras/Raf/MEK scaffold in nerve growth factor-mediated differentiation.
M. D. Willard, F. S. Willard, X. Li, S. D. Cappell, W. D. Snider, and D. P. Siderovski (2007)
EMBO J. 26, 2029-2040
   Abstract »    Full Text »    PDF »
Identification of a putative nuclear localization sequence within ANG II AT1A receptor associated with nuclear activation.
T. A. Morinelli, J. R. Raymond, A. Baldys, Q. Yang, M.-h. Lee, L. Luttrell, and M. E. Ullian (2007)
Am J Physiol Cell Physiol 292, C1398-C1408
   Abstract »    Full Text »    PDF »
beta-arrestin signaling and regulation of transcription.
L. Ma and G. Pei (2007)
J. Cell Sci. 120, 213-218
   Abstract »    Full Text »    PDF »
The IL Sequence in the LLKIL Motif in CXCR2 Is Required for Full Ligand-induced Activation of Erk, Akt, and Chemotaxis in HL60 Cells.
J. Sai, G. Walker, J. Wikswo, and A. Richmond (2006)
J. Biol. Chem. 281, 35931-35941
   Abstract »    Full Text »    PDF »
G Protein-coupled Receptor Kinase and beta-Arrestin-mediated Desensitization of the Angiotensin II Type 1A Receptor Elucidated by Diacylglycerol Dynamics.
J. D. Violin, S. M. DeWire, W. G. Barnes, and R. J. Lefkowitz (2006)
J. Biol. Chem. 281, 36411-36419
   Abstract »    Full Text »    PDF »
Mu Opioid Receptor Activation of ERK1/2 Is GRK3 and Arrestin Dependent in Striatal Neurons.
T. A. Macey, J. D. Lowe, and C. Chavkin (2006)
J. Biol. Chem. 281, 34515-34524
   Abstract »    Full Text »    PDF »
CXCL12 Induces Tyrosine Phosphorylation of Cortactin, Which Plays a Role in CXC Chemokine Receptor 4-mediated Extracellular Signal-regulated Kinase Activation and Chemotaxis.
C. Luo, H. Pan, M. Mines, K. Watson, J. Zhang, and G.-H. Fan (2006)
J. Biol. Chem. 281, 30081-30093
   Abstract »    Full Text »    PDF »
R7BP Augments the Function of RGS7{middle dot}Gbeta5 Complexes by a Plasma Membrane-targeting Mechanism.
R. M. Drenan, C. A. Doupnik, M. Jayaraman, A. L. Buchwalter, K. M. Kaltenbronn, J. E. Huettner, M. E. Linder, and K. J. Blumer (2006)
J. Biol. Chem. 281, 28222-28231
   Abstract »    Full Text »    PDF »
Ubiquitin-dependent Down-regulation of the Neurokinin-1 Receptor.
G. S. Cottrell, B. Padilla, S. Pikios, D. Roosterman, M. Steinhoff, D. Gehringer, E. F. Grady, and N. W. Bunnett (2006)
J. Biol. Chem. 281, 27773-27783
   Abstract »    Full Text »    PDF »
Kermit 2/XGIPC, an IGF1 receptor interacting protein, is required for IGF signaling in Xenopus eye development.
J. Wu, M. O'Donnell, A. D. Gitler, and P. S. Klein (2006)
Development 133, 3651-3660
   Abstract »    Full Text »    PDF »
Arrestin Serves as a Molecular Switch, Linking Endogenous {alpha}2-Adrenergic Receptor to SRC-dependent, but Not SRC-independent, ERK Activation.
Q. Wang, R. Lu, J. Zhao, and L. E. Limbird (2006)
J. Biol. Chem. 281, 25948-25955
   Abstract »    Full Text »    PDF »
Visual and Both Non-visual Arrestins in Their "Inactive" Conformation Bind JNK3 and Mdm2 and Relocalize Them from the Nucleus to the Cytoplasm.
X. Song, D. Raman, E. V. Gurevich, S. A. Vishnivetskiy, and V. V. Gurevich (2006)
J. Biol. Chem. 281, 21491-21499
   Abstract »    Full Text »    PDF »
Localization of ERK/MAP Kinase Is Regulated by the Alphaherpesvirus Tegument Protein Us2.
M. G. Lyman, J. A. Randall, C. M. Calton, and B. W. Banfield (2006)
J. Virol. 80, 7159-7168
   Abstract »    Full Text »    PDF »
Constitutive ERK1/2 Activation by a Chimeric Neurokinin 1 Receptor-beta-Arrestin1 Fusion Protein: PROBING THE COMPOSITION AND FUNCTION OF THE G PROTEIN-COUPLED RECEPTOR "SIGNALSOME".
F. Jafri, H. M. El-Shewy, M.-H. Lee, M. Kelly, D. K. Luttrell, and L. M. Luttrell (2006)
J. Biol. Chem. 281, 19346-19357
   Abstract »    Full Text »    PDF »
Kappa Opioid Receptor Activation of p38 MAPK Is GRK3- and Arrestin-dependent in Neurons and Astrocytes.
M. R. Bruchas, T. A. Macey, J. D. Lowe, and C. Chavkin (2006)
J. Biol. Chem. 281, 18081-18089
   Abstract »    Full Text »    PDF »
Cooperative Regulation of Extracellular Signal-Regulated Kinase Activation and Cell Shape Change by Filamin A and {beta}-Arrestins.
M. G. H. Scott, V. Pierotti, H. Storez, E. Lindberg, A. Thuret, O. Muntaner, C. Labbe-Jullie, J. A. Pitcher, and S. Marullo (2006)
Mol. Cell. Biol. 26, 3432-3445
   Abstract »    Full Text »    PDF »
Distinct beta-Arrestin- and G Protein-dependent Pathways for Parathyroid Hormone Receptor-stimulated ERK1/2 Activation.
D. Gesty-Palmer, M. Chen, E. Reiter, S. Ahn, C. D. Nelson, S. Wang, A. E. Eckhardt, C. L. Cowan, R. F. Spurney, L. M. Luttrell, et al. (2006)
J. Biol. Chem. 281, 10856-10864
   Abstract »    Full Text »    PDF »
Activation of group III metabotropic glutamate receptors attenuates rotenone toxicity on dopaminergic neurons through a microtubule-dependent mechanism..
Q. Jiang, Z. Yan, and J. Feng (2006)
J. Neurosci. 26, 4318-4328
   Abstract »    Full Text »    PDF »
Nonvisual Arrestin Oligomerization and Cellular Localization Are Regulated by Inositol Hexakisphosphate Binding.
S. K. Milano, Y.-M. Kim, F. P. Stefano, J. L. Benovic, and C. Brenner (2006)
J. Biol. Chem. 281, 9812-9823
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882