Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 99 (12): 7951-7955

Copyright © 2002 by the National Academy of Sciences.


Direct, activating interaction between glycogen synthase kinase-3β and p53 after DNA damage

Piyajit Watcharasit*, Gautam N. Bijur*, Jaroslaw W. Zmijewski*, Ling Song*, Anna Zmijewska*, Xinbin Chen{dagger}, Gail V. W. Johnson*,{dagger}, and Richard S. Jope*,{dagger},{ddagger}

Departments of *Psychiatry and Behavioral Neurobiology and {dagger}Cell Biology, University of Alabama, Birmingham, AL 35294-0017

Received for publication February 2, 2002.

Abstract: Glycogen synthase kinase-3β (GSK3β) is a central figure in Wnt signaling, in which its activity is controlled by regulatory binding proteins. Here we show that binding proteins outside the Wnt pathway also control the activity of GSK3β. DNA damage induced by camptothecin, which activates the tumor suppressor p53, was found to activate GSK3β. This activation occurred by a phosphorylation-independent mechanism involving direct binding of GSK3β to p53, which was confined to the nucleus where p53 is localized, and mutated p53 (R175H) bound but did not activate GSK3β. Activation of GSK3 promoted responses to p53 including increases in p21 levels and caspase-3 activity. Thus, after DNA damage there is a direct interaction between p53 and GSK3β, and these proteins act in concert to regulate cellular responses to DNA damage.

{ddagger} To whom reprint requests should be addressed at: Department of Psychiatry, Sparks Center 1057, University of Alabama, Birmingham, AL 35294-0017. E-mail: jope{at}

Edited by Joseph A. Beavo, University of Washington School of Medicine, Seattle, WA, and approved April 19, 2002

This paper was submitted directly (Track II) to the PNAS office.

GSK-3 - at the crossroads of cell death and survival.
U. Maurer, F. Preiss, P. Brauns-Schubert, L. Schlicher, and C. Charvet (2014)
J. Cell Sci. 127, 1369-1378
   Abstract »    Full Text »    PDF »
Silencing of p53 RNA through transarterial delivery ameliorates renal tubular injury and downregulates GSK-3{beta} expression after ischemia-reperfusion injury.
T. Fujino, S. Muhib, N. Sato, and N. Hasebe (2013)
Am J Physiol Renal Physiol 305, F1617-F1627
   Abstract »    Full Text »    PDF »
Glycogen synthase kinase 3 promotes p53 mRNA translation via phosphorylation of RNPC1.
M. Zhang, J. Zhang, X. Chen, S.-J. Cho, and X. Chen (2013)
Genes & Dev. 27, 2246-2258
   Abstract »    Full Text »    PDF »
Dual effects of increased glycogen synthase kinase-3{beta} activity on adult neurogenesis.
A. Fuster-Matanzo, M. Llorens-Martin, M. S. Sirerol-Piquer, J. M. Garcia-Verdugo, J. Avila, and F. Hernandez (2013)
Hum. Mol. Genet. 22, 1300-1315
   Abstract »    Full Text »    PDF »
Glycogen synthase kinase-3: cryoprotection and glycogen metabolism in the freeze-tolerant wood frog.
C. A. Dieni, M. C. Bouffard, and K. B. Storey (2012)
J. Exp. Biol. 215, 543-551
   Abstract »    Full Text »    PDF »
Glycogen synthase kinase 3{beta} inhibition enhances repair of DNA double-strand breaks in irradiated hippocampal neurons.
E. S. Yang, S. Nowsheen, T. Wang, D. K. Thotala, and F. Xia (2011)
Neuro Oncology 13, 459-470
   Abstract »    Full Text »    PDF »
NSAID-activated gene-1 as a molecular target for capsaicin-induced apoptosis through a novel molecular mechanism involving GSK3{beta}, C/EBP{beta} and ATF3.
S. H. Lee, C. Krisanapun, and S. J. Baek (2010)
Carcinogenesis 31, 719-728
   Abstract »    Full Text »    PDF »
Repair of Nitric Oxide-damaged DNA in {beta}-Cells Requires JNK-dependent GADD45{alpha} Expression.
K. J. Hughes, G. P. Meares, K. T. Chambers, and J. A. Corbett (2009)
J. Biol. Chem. 284, 27402-27408
   Abstract »    Full Text »    PDF »
Cytoplasmic Accumulation of Glycogen Synthase Kinase-3{beta} Is Associated with Aggressive Clinicopathological Features in Human Prostate Cancer.
Anticancer Res 29, 2077-2081
   Abstract »    Full Text »    PDF »
Inhibition of Glycogen Synthase Kinase 3{beta} Attenuates Neurocognitive Dysfunction Resulting from Cranial Irradiation.
D. K. Thotala, D. E. Hallahan, and E. M. Yazlovitskaya (2008)
Cancer Res. 68, 5859-5868
   Abstract »    Full Text »    PDF »
Neural Precursor Cells Are Protected from Apoptosis Induced by Trophic Factor Withdrawal or Genotoxic Stress by Inhibitors of Glycogen Synthase Kinase 3.
T.-Y. Eom, K. A. Roth, and R. S. Jope (2007)
J. Biol. Chem. 282, 22856-22864
   Abstract »    Full Text »    PDF »
Kaposi's Sarcoma-Associated Herpesvirus LANA Protein Downregulates Nuclear Glycogen Synthase Kinase 3 Activity and Consequently Blocks Differentiation.
J. Liu, H. Martin, M. Shamay, C. Woodard, Q.-Q. Tang, and S. D. Hayward (2007)
J. Virol. 81, 4722-4731
   Abstract »    Full Text »    PDF »
Regulation and Function of Glycogen Synthase Kinase-3 Isoforms in Neuronal Survival.
M.-H. Liang and D.-M. Chuang (2007)
J. Biol. Chem. 282, 3904-3917
   Abstract »    Full Text »    PDF »
The JAK/STAT pathway is essential for opioid-induced cardioprotection: JAK2 as a mediator of STAT3, Akt, and GSK-3beta.
E. R. Gross, A. K. Hsu, and G. J. Gross (2006)
Am J Physiol Heart Circ Physiol 291, H827-H834
   Abstract »    Full Text »    PDF »
Phosphorylation Marks IPF1/PDX1 Protein for Degradation by Glycogen Synthase Kinase 3-dependent Mechanisms.
M.-J. Boucher, L. Selander, L. Carlsson, and H. Edlund (2006)
J. Biol. Chem. 281, 6395-6403
   Abstract »    Full Text »    PDF »
The Low Density Lipoprotein Receptor-related Protein 6 Interacts with Glycogen Synthase Kinase 3 and Attenuates Activity.
K. Mi, P. J. Dolan, and G. V. W. Johnson (2006)
J. Biol. Chem. 281, 4787-4794
   Abstract »    Full Text »    PDF »
Protein Kinase B/Akt-Dependent Phosphorylation of Glycogen Synthase Kinase-3{beta} in Irradiated Vascular Endothelium.
J. Tan, L. Geng, E. M. Yazlovitskaya, and D. E. Hallahan (2006)
Cancer Res. 66, 2320-2327
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3 and h-prune Regulate Cell Migration by Modulating Focal Adhesions.
T. Kobayashi, S.-i. Hino, N. Oue, T. Asahara, M. Zollo, W. Yasui, and A. Kikuchi (2006)
Mol. Cell. Biol. 26, 898-911
   Abstract »    Full Text »    PDF »
Physiological and Pathological Changes in Glucose Regulate Brain Akt and Glycogen Synthase Kinase-3.
B. Clodfelder-Miller, P. De Sarno, A. A. Zmijewska, L. Song, and R. S. Jope (2005)
J. Biol. Chem. 280, 39723-39731
   Abstract »    Full Text »    PDF »
Endoplasmic Reticulum Stress Accelerates p53 Degradation by the Cooperative Actions of Hdm2 and Glycogen Synthase Kinase 3{beta}.
O. Pluquet, L.-K. Qu, D. Baltzis, and A. E. Koromilas (2005)
Mol. Cell. Biol. 25, 9392-9405
   Abstract »    Full Text »    PDF »
Pharmacologic Modulation of Glycogen Synthase Kinase-3{beta} Promotes p53-Dependent Apoptosis through a Direct Bax-Mediated Mitochondrial Pathway in Colorectal Cancer Cells.
J. Tan, L. Zhuang, H.-S. Leong, N. G. Iyer, E. T. Liu, and Q. Yu (2005)
Cancer Res. 65, 9012-9020
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3-Dependent Phosphorylation of Mdm2 Regulates p53 Abundance.
R. Kulikov, K. A. Boehme, and C. Blattner (2005)
Mol. Cell. Biol. 25, 7170-7180
   Abstract »    Full Text »    PDF »
Regulation of the Interaction between Glycogen Synthase Kinase 3 and the Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen.
M. Fujimuro, J. Liu, J. Zhu, H. Yokosawa, and S. D. Hayward (2005)
J. Virol. 79, 10429-10441
   Abstract »    Full Text »    PDF »
FRAT-2 Preferentially Increases Glycogen Synthase Kinase 3{beta}-mediated Phosphorylation of Primed Sites, Which Results in Enhanced Tau Phosphorylation.
W. H. Stoothoff, J.-H. Cho, R. P. McDonald, and G. V. W. Johnson (2005)
J. Biol. Chem. 280, 270-276
   Abstract »    Full Text »    PDF »
Accumulation of Cytoplasmic {beta}-Catenin and Nuclear Glycogen Synthase Kinase 3{beta} in Epstein-Barr Virus-Infected Cells.
D. N. Everly Jr., S. Kusano, and N. Raab-Traub (2004)
J. Virol. 78, 11648-11655
   Abstract »    Full Text »    PDF »
p53 and stress in the ER.
E. S. Stavridi and T. D. Halazonetis (2004)
Genes & Dev. 18, 241-244
   Full Text »    PDF »
Endoplasmic reticulum stress induces p53 cytoplasmic localization and prevents p53-dependent apoptosis by a pathway involving glycogen synthase kinase-3{beta}.
L. Qu, S. Huang, D. Baltzis, A.-M. Rivas-Estilla, O. Pluquet, M. Hatzoglou, C. Koumenis, Y. Taya, A. Yoshimura, and A. E. Koromilas (2004)
Genes & Dev. 18, 261-277
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase-3{beta} (GSK3{beta}) Binds to and Promotes the Actions of p53.
P. Watcharasit, G. N. Bijur, L. Song, J. Zhu, X. Chen, and R. S. Jope (2003)
J. Biol. Chem. 278, 48872-48879
   Abstract »    Full Text »    PDF »
Decreased Cyclin-Dependent Kinase 5 (cdk5) Activity Is Accompanied by Redistribution of cdk5 and Cytoskeletal Proteins and Increased Cytoskeletal Protein Phosphorylation in p35 Null Mice.
J. L. Hallows, K. Chen, R. A. DePinho, and I. Vincent (2003)
J. Neurosci. 23, 10633-10644
   Abstract »    Full Text »    PDF »
GSK-3: tricks of the trade for a multi-tasking kinase.
B. W. Doble and J. R. Woodgett (2003)
J. Cell Sci. 116, 1175-1186
   Abstract »    Full Text »    PDF »
Muscarinic Receptor Activation Protects Cells from Apoptotic Effects of DNA Damage, Oxidative Stress, and Mitochondrial Inhibition.
P. De Sarno, S. A. Shestopal, T. D. King, A. Zmijewska, L. Song, and R. S. Jope (2003)
J. Biol. Chem. 278, 11086-11093
   Abstract »    Full Text »    PDF »
Glycogen Synthase Kinase 3beta Phosphorylates Tau at Both Primed and Unprimed Sites. DIFFERENTIAL IMPACT ON MICROTUBULE BINDING.
J.-H. Cho and G. V. W. Johnson (2003)
J. Biol. Chem. 278, 187-193
   Abstract »    Full Text »    PDF »
Central Role of Glycogen Synthase Kinase-3beta in Endoplasmic Reticulum Stress-induced Caspase-3 Activation.
L. Song, P. De Sarno, and R. S. Jope (2002)
J. Biol. Chem. 277, 44701-44708
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882