Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 99 (13): 8892-8897

Copyright © 2002 by the National Academy of Sciences.


Inhibition of mitochondrial respiration by endogenous nitric oxide: A critical step in Fas signaling

Belén Beltrán*, Marisol Quintero*, Eugenia García-Zaragozá{dagger}, Enrique O'Connor{ddagger}, Juan V. Esplugues*,{dagger}, and Salvador Moncada§

*Centro Nacional de Investigaciones Cardiovasculares, C/Sinesio Delgado, 6 - Pab.5 28029 Madrid, Spain; {dagger}Departamento de Farmacología, {ddagger}Departamento de Bioquímica, Universidad de Valencia, Blasco Ibanez no. 15, 46010 Valencia, Spain; and §The Wolfson Institute for Biomedical Research, University College London, Gower Street, London WC1E 6BT, United Kingdom

Contributed by Salvador Moncada

Accepted for publication May 1, 2002.

Abstract: We have found that activation of human adult T cell leukemia (Jurkat) cells with anti-Fas Ab leads, in a concentration-dependent manner, to an early burst of production of nitric oxide (NO), which inhibits cell respiration. This results in mitochondrial hyperpolarization, dependent on the hydrolysis of glycolytic ATP by the F1Fo-ATPase acting in reverse mode. During this early phase of activation, there is a transient release of superoxide anion. All these processes can be prevented by an inhibitor of NO synthase. Approximately 2 h after stimulation with anti-Fas Ab, a distinct second phase can be detected. This comprises a concentration-dependent collapse in mitochondrial membrane potential, a second wave of free radical production, and activation of caspase-8 leading to apoptosis. This second phase is abolished by an inhibitor of caspase activation. In contrast, inhibition of NO synthesis leads to an enhancement and acceleration of these latter processes, suggesting that the early NO-dependent phase represents a protective mechanism. The significance of the two phases in relation to cell survival and death remains to be studied.

To whom reprint requests should be addressed. E-mail: s.moncada{at}

Studies on the toxicological effect of nevirapine, an antiretroviral drug, on the liver, kidney and testis of male Wistar rats.
O. Adaramoye, O. Adesanoye, O. Adewumi, and O. Akanni (2012)
Human and Experimental Toxicology 31, 676-685
   Abstract »    Full Text »    PDF »
Newly lesioned tissue in multiple sclerosis--a role for oxidative damage?.
K. J. Smith (2011)
Brain 134, 1877-1881
   Full Text »    PDF »
Endothelial nitric oxide synthase regulates N-Ras activation on the Golgi complex of antigen-stimulated T cells.
S. Ibiza, A. Perez-Rodriguez, A. Ortega, A. Martinez-Ruiz, O. Barreiro, C. A. Garcia-Dominguez, V. M. Victor, J. V. Esplugues, J. M. Rojas, F. Sanchez-Madrid, et al. (2008)
PNAS 105, 10507-10512
   Abstract »    Full Text »    PDF »
Mitochondrial Dysfunction in the Hypertensive Rat Brain: Respiratory Complexes Exhibit Assembly Defects in Hypertension.
A. Lopez-Campistrous, L. Hao, W. Xiang, D. Ton, P. Semchuk, J. Sander, M. J. Ellison, and C. Fernandez-Patron (2008)
Hypertension 51, 412-419
   Abstract »    Full Text »    PDF »
Deleterious effects of short-term, high-intensity exercise on immune function: evidence from leucocyte mitochondrial alterations and apoptosis.
T-C Tuan, T-G Hsu, M-C Fong, C-F Hsu, K K C Tsai, C-Y Lee, and C-W Kong (2008)
Br. J. Sports Med. 42, 11-15
   Abstract »    Full Text »    PDF »
Glutathione Depletion Is Necessary for Apoptosis in Lymphoid Cells Independent of Reactive Oxygen Species Formation.
R. Franco, M. I. Panayiotidis, and J. A. Cidlowski (2007)
J. Biol. Chem. 282, 30452-30465
   Abstract »    Full Text »    PDF »
Carbon monoxide signals via inhibition of cytochrome c oxidase and generation of mitochondrial reactive oxygen species.
B. S. Zuckerbraun, B. Y. Chin, M. Bilban, J. de Costa d'Avila, J. Rao, T. R. Billiar, and L. E. Otterbein (2007)
FASEB J 21, 1099-1106
   Abstract »    Full Text »    PDF »
The induction of Bim expression in human T-cell blasts is dependent on nonapoptotic Fas/CD95 signaling.
A. Bosque, J. I. Aguilo, M. A. Alava, E. Paz-Artal, J. Naval, L. M. Allende, and A. Anel (2007)
Blood 109, 1627-1635
   Abstract »    Full Text »    PDF »
Dissociating the dual roles of apoptosis-inducing factor in maintaining mitochondrial structure and apoptosis.
E. C. Cheung, N. Joza, N. A. Steenaart, K. A. McClellan, M. Neuspiel, S. McNamara, J. G. MacLaurin, P. Rippstein, D. S. Park, G. C. Shore, et al. (2006)
EMBO J. 25, 4061-4073
   Abstract »    Full Text »    PDF »
Vascular wall energetics in arterioles during nitric oxide-dependent and -independent vasodilation.
M. Shibata, K. Qin, S. Ichioka, and A. Kamiya (2006)
J Appl Physiol 100, 1793-1798
   Abstract »    Full Text »    PDF »
Adventures in vascular biology: a tale of two mediators.
S. Moncada (2006)
Phil Trans R Soc B 361, 735-759
   Abstract »    Full Text »    PDF »
Kidney oxygen consumption, carbonic anhydrase, and proton secretion.
A. Deng, C. M. Miracle, M. Lortie, J. Satriano, F. B. Gabbai, K. A. Munger, S. C. Thomson, and R. C. Blantz (2006)
Am J Physiol Renal Physiol 290, F1009-F1015
   Abstract »    Full Text »    PDF »
IL-6 induces PI 3-kinase and nitric oxide-dependent protection and preserves mitochondrial function in cardiomyocytes.
N. Smart, M. H. Mojet, D. S. Latchman, M. S. Marber, M. R. Duchen, and R. J. Heads (2006)
Cardiovasc Res 69, 164-177
   Abstract »    Full Text »    PDF »
Nitric oxide modulates oxygen consumption by arteriolar walls in rat skeletal muscle.
M. Shibata, S. Ichioka, and A. Kamiya (2005)
Am J Physiol Heart Circ Physiol 289, H2673-H2679
   Abstract »    Full Text »    PDF »
Modulation of mitochondrial Ca2+ by nitric oxide in cultured bovine vascular endothelial cells.
E. N. Dedkova and L. A. Blatter (2005)
Am J Physiol Cell Physiol 289, C836-C845
   Abstract »    Full Text »    PDF »
Intratumoral NAMI-A Treatment Triggers Metastasis Reduction, Which Correlates to CD44 Regulation and Tumor Infiltrating Lymphocyte Recruitment.
S. Pacor, S. Zorzet, M. Cocchietto, M. Bacac, M. Vadori, C. Turrin, B. Gava, A. Castellarin, and G. Sava (2004)
J. Pharmacol. Exp. Ther. 310, 737-744
   Abstract »    Full Text »    PDF »
Roles of Heme Oxygenase-1 in the Antiproliferative and Antiapoptotic Effects of Nitric Oxide on Jurkat T Cells.
H.-O. Pae, B.-M. Choi, G.-S. Oh, M.-S. Lee, D.-G. Ryu, H.-Y. Rhew, Y.-M. Kim, and H.-T. Chung (2004)
Mol. Pharmacol. 66, 122-128
   Abstract »    Full Text »    PDF »
Fas-Mediated Apoptosome Formation Is Dependent on Reactive Oxygen Species Derived from Mitochondrial Permeability Transition in Jurkat Cells.
T. Sato, T. Machida, S. Takahashi, S. Iyama, Y. Sato, K. Kuribayashi, K. Takada, T. Oku, Y. Kawano, T. Okamoto, et al. (2004)
J. Immunol. 173, 285-296
   Abstract »    Full Text »    PDF »
Effects of TNF-{alpha} and IFN-{gamma} on Nitric Oxide-Induced Neurotoxicity in the Mouse Brain.
V. Blais and S. Rivest (2004)
J. Immunol. 172, 7043-7052
   Abstract »    Full Text »    PDF »
Endogenous NO regulates superoxide production at low oxygen concentrations by modifying the redox state of cytochrome c oxidase.
M. Palacios-Callender, M. Quintero, V. S. Hollis, R. J. Springett, and S. Moncada (2004)
PNAS 101, 7630-7635
   Abstract »    Full Text »    PDF »
Mitochondrial calcium uptake stimulates nitric oxide production in mitochondria of bovine vascular endothelial cells.
E. N. Dedkova, X. Ji, S. L. Lipsius, and L. A. Blatter (2004)
Am J Physiol Cell Physiol 286, C406-C415
   Abstract »    Full Text »
Nitrosylation of Cytochrome c during Apoptosis.
C. M. Schonhoff, B. Gaston, and J. B. Mannick (2003)
J. Biol. Chem. 278, 18265-18270
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882