Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 99 (20): 13260-13265

Copyright © 2002 by the National Academy of Sciences.


BIOLOGICAL SCIENCES / PHARMACOLOGY

The two GAF domains in phosphodiesterase 2A have distinct roles in dimerization and in cGMP binding

Sergio E. Martinez*, Albert Y. Wu*, Natalie A. Glavas*, Xiao-Bo Tang*, Stewart Turley{dagger}, Wim G. J. Hol*,{dagger}, and Joseph A. Beavo*,{ddagger}

Departments of *Pharmacology, and {dagger}Biochemistry and Biological Structure, Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195

Received for publication June 22, 2002.

Abstract: Cyclic nucleotide phosphodiesterases (PDEs) regulate all pathways that use cGMP or cAMP as a second messenger. Five of the 11 PDE families have regulatory segments containing GAF domains, 3 of which are known to bind cGMP. In PDE2 binding of cGMP to the GAF domain causes an activation of the catalytic activity by a mechanism that apparently is shared even in the adenylyl cyclase of Anabaena, an organism separated from mouse by 2 billion years of evolution. The 2.9-Å crystal structure of the mouse PDE2A regulatory segment reported in this paper reveals that the GAF A domain functions as a dimerization locus. The GAF B domain shows a deeply buried cGMP displaying a new cGMP-binding motif and is the first atomic structure of a physiological cGMP receptor with bound cGMP. Moreover, this cGMP site is located well away from the region predicted by previous mutagenesis and structural genomic approaches.


{ddagger} To whom reprint requests should be addressed. E-mail: beavo{at}u.washington.edu.

Edited by Lutz Birnbaumer, National Institutes of Health, Research Triangle Park, NC, and approved July 22, 2002

This paper was submitted directly (Track II) to the PNAS office.

Data deposition: The atomic coordinates have been deposited in the Protein Data Bank, www.rcsb.org (PDB ID code 1MC0).

THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Differential regulation of cardiac excitation-contraction coupling by cAMP phosphodiesterase subtypes.
D. Mika, P. Bobin, M. Pomerance, P. Lechene, R. E. Westenbroek, W. A. Catterall, G. Vandecasteele, J. Leroy, and R. Fischmeister (2013)
Cardiovasc Res 100, 336-346
   Abstract »    Full Text »    PDF »
Structures of the PelD Cyclic Diguanylate Effector Involved in Pellicle Formation in Pseudomonas aeruginosa PAO1.
Z. Li, J.-H. Chen, Y. Hao, and S. K. Nair (2012)
J. Biol. Chem. 287, 30191-30204
   Abstract »    Full Text »    PDF »
Phosphodiesterases and Cyclic GMP Regulation in Heart Muscle.
D. I. Lee and D. A. Kass (2012)
Physiology 27, 248-258
   Abstract »    Full Text »    PDF »
Mammalian Cyclic Nucleotide Phosphodiesterases: Molecular Mechanisms and Physiological Functions.
S. H. Francis, M. A. Blount, and J. D. Corbin (2011)
Physiol Rev 91, 651-690
   Abstract »    Full Text »    PDF »
Distinct Allostery Induced in the Cyclic GMP-binding, Cyclic GMP-specific Phosphodiesterase (PDE5) by Cyclic GMP, Sildenafil, and Metal Ions.
K. H. Biswas and S. S. Visweswariah (2011)
J. Biol. Chem. 286, 8545-8554
   Abstract »    Full Text »    PDF »
Decreased catalytic activity and altered activation properties of PDE6C mutants associated with autosomal recessive achromatopsia.
T. Grau, N. O. Artemyev, T. Rosenberg, H. Dollfus, O. H. Haugen, E. Cumhur Sener, B. Jurklies, S. Andreasson, C. Kernstock, M. Larsen, et al. (2011)
Hum. Mol. Genet. 20, 719-730
   Abstract »    Full Text »    PDF »
Conformation Changes, N-terminal Involvement, and cGMP Signal Relay in the Phosphodiesterase-5 GAF Domain.
H. Wang, H. Robinson, and H. Ke (2010)
J. Biol. Chem. 285, 38149-38156
   Abstract »    Full Text »    PDF »
cGMP-Dependent Protein Kinases and cGMP Phosphodiesterases in Nitric Oxide and cGMP Action.
S. H. Francis, J. L. Busch, and J. D. Corbin (2010)
Pharmacol. Rev. 62, 525-563
   Abstract »    Full Text »    PDF »
Multiple Affinity States of cGMP-Specific Phosphodiesterase for Sildenafil Inhibition Defined by cGMP-Dependent and cGMP-Independent Mechanisms.
I. G. Rybalkina, X.-B. Tang, and S. D. Rybalkin (2010)
Mol. Pharmacol. 77, 670-677
   Abstract »    Full Text »    PDF »
Genetic and Biochemical Analysis of the Interaction of Bacillus subtilis CodY with Branched-Chain Amino Acids.
A. C. Villapakkam, L. D. Handke, B. R. Belitsky, V. M. Levdikov, A. J. Wilkinson, and A. L. Sonenshein (2009)
J. Bacteriol. 191, 6865-6876
   Abstract »    Full Text »    PDF »
Mechanism for the allosteric regulation of phosphodiesterase 2A deduced from the X-ray structure of a near full-length construct.
J. Pandit, M. D. Forman, K. F. Fennell, K. S. Dillman, and F. S. Menniti (2009)
PNAS 106, 18225-18230
   Abstract »    Full Text »    PDF »
Crystal Structures of YkuI and Its Complex with Second Messenger Cyclic Di-GMP Suggest Catalytic Mechanism of Phosphodiester Bond Cleavage by EAL Domains.
G. Minasov, S. Padavattan, L. Shuvalova, J. S. Brunzelle, D. J. Miller, A. Basle, C. Massa, F. R. Collart, T. Schirmer, and W. F. Anderson (2009)
J. Biol. Chem. 284, 13174-13184
   Abstract »    Full Text »    PDF »
Structural Insight into the Heme-based Redox Sensing by DosS from Mycobacterium tuberculosis.
H. Y. Cho, H. J. Cho, Y. M. Kim, J. I. Oh, and B. S. Kang (2009)
J. Biol. Chem. 284, 13057-13067
   Abstract »    Full Text »    PDF »
O2- and NO-Sensing Mechanism through the DevSR Two-Component System in Mycobacterium smegmatis.
J.-M. Lee, H. Y. Cho, H. J. Cho, I.-J. Ko, S. W. Park, H.-S. Baik, J.-H. Oh, C.-Y. Eom, Y. M. Kim, B. S. Kang, et al. (2008)
J. Bacteriol. 190, 6795-6804
   Abstract »    Full Text »    PDF »
The structure of a complete phytochrome sensory module in the Pr ground state.
L.-O. Essen, J. Mailliet, and J. Hughes (2008)
PNAS 105, 14709-14714
   Abstract »    Full Text »    PDF »
The Structure of the GAF A Domain from Phosphodiesterase 6C Reveals Determinants of cGMP Binding, a Conserved Binding Surface, and a Large cGMP-dependent Conformational Change.
S. E. Martinez, C. C. Heikaus, R. E. Klevit, and J. A. Beavo (2008)
J. Biol. Chem. 283, 25913-25919
   Abstract »    Full Text »    PDF »
Functional Chimeras of the Phosphodiesterase 5 and 10 Tandem GAF Domains.
K. Hofbauer, A. Schultz, and J. E. Schultz (2008)
J. Biol. Chem. 283, 25164-25170
   Abstract »    Full Text »    PDF »
Heteromeric Interactions among Ethylene Receptors Mediate Signaling in Arabidopsis.
Z. Gao, C.-K. Wen, B. M. Binder, Y.-F. Chen, J. Chang, Y.-H. Chiang, R. J. Kerris III, C. Chang, and G. E. Schaller (2008)
J. Biol. Chem. 283, 23801-23810
   Abstract »    Full Text »    PDF »
Solution Structure of the cGMP Binding GAF Domain from Phosphodiesterase 5: INSIGHTS INTO NUCLEOTIDE SPECIFICITY, DIMERIZATION, AND cGMP-DEPENDENT CONFORMATIONAL CHANGE.
C. C. Heikaus, J. R. Stout, M. R. Sekharan, C. M. Eakin, P. Rajagopal, P. S. Brzovic, J. A. Beavo, and R. E. Klevit (2008)
J. Biol. Chem. 283, 22749-22759
   Abstract »    Full Text »    PDF »
Crystal Structure of the GAF-B Domain from Human Phosphodiesterase 10A Complexed with Its Ligand, cAMP.
N. Handa, E. Mizohata, S. Kishishita, M. Toyama, S. Morita, T. Uchikubo-Kamo, R. Akasaka, K. Omori, J. Kotera, T. Terada, et al. (2008)
J. Biol. Chem. 283, 19657-19664
   Abstract »    Full Text »    PDF »
Subcellular Localization and In Vivo Interactions of the Arabidopsis thaliana Ethylene Receptor Family Members.
C. Grefen, K. Stadele, K. Ruzicka, P. Obrdlik, K. Harter, and J. Horak (2008)
Mol Plant 1, 308-320
   Abstract »    Full Text »    PDF »
Analysis of the Nitric Oxide-sensing Non-heme Iron Center in the NorR Regulatory Protein.
N. P. Tucker, B. D'Autreaux, F. K. Yousafzai, S. A. Fairhurst, S. Spiro, and R. Dixon (2008)
J. Biol. Chem. 283, 908-918
   Abstract »    Full Text »    PDF »
Free methionine-(R)-sulfoxide reductase from Escherichia coli reveals a new GAF domain function.
Z. Lin, L. C. Johnson, H. Weissbach, N. Brot, M. O. Lively, and W. T. Lowther (2007)
PNAS 104, 9597-9602
   Abstract »    Full Text »    PDF »
Phosphodiesterase 2A Forms a Complex with the Co-chaperone XAP2 and Regulates Nuclear Translocation of the Aryl Hydrocarbon Receptor.
S. K. de Oliveira, M. Hoffmeister, S. Gambaryan, W. Muller-Esterl, J. A. Guimaraes, and A. P. Smolenski (2007)
J. Biol. Chem. 282, 13656-13663
   Abstract »    Full Text »    PDF »
Overview of PDEs and Their Regulation.
K. Omori and J. Kotera (2007)
Circ. Res. 100, 309-327
   Abstract »    Full Text »    PDF »
Compartmentation of Cyclic Nucleotide Signaling in the Heart: The Role of Cyclic Nucleotide Phosphodiesterases.
R. Fischmeister, L. R.V. Castro, A. Abi-Gerges, F. Rochais, J. Jurevicius, J. Leroy, and G. Vandecasteele (2006)
Circ. Res. 99, 816-828
   Abstract »    Full Text »    PDF »
Receptor Signal Output Mediated by the ETR1 N Terminus Is Primarily Subfamily I Receptor Dependent.
F. Xie, Q. Liu, and C.-K. Wen (2006)
Plant Physiology 142, 492-508
   Abstract »    Full Text »    PDF »
Cyclic Nucleotide Phosphodiesterases: Molecular Regulation to Clinical Use.
A. T. Bender and J. A. Beavo (2006)
Pharmacol. Rev. 58, 488-520
   Abstract »    Full Text »    PDF »
Characterization of the Tandem GAF Domain of Human Phosphodiesterase 5 Using a Cyanobacterial Adenylyl Cyclase as a Reporter Enzyme.
S. Bruder, A. Schultz, and J. E. Schultz (2006)
J. Biol. Chem. 281, 19969-19976
   Abstract »    Full Text »    PDF »
The Inhibitory {gamma} Subunit of the Rod cGMP Phosphodiesterase Binds the Catalytic Subunits in an Extended Linear Structure.
L.-W. Guo, H. Muradov, A. R. Hajipour, M. K. Sievert, N. O. Artemyev, and A. E. Ruoho (2006)
J. Biol. Chem. 281, 15412-15422
   Abstract »    Full Text »    PDF »
Cyclic Guanosine Monophosphate Compartmentation in Rat Cardiac Myocytes.
L. R.V. Castro, I. Verde, D. M.F. Cooper, and R. Fischmeister (2006)
Circulation 113, 2221-2228
   Abstract »    Full Text »    PDF »
cAMP Is a Ligand for the Tandem GAF Domain of Human Phosphodiesterase 10 and cGMP for the Tandem GAF Domain of Phosphodiesterase 11.
M. Gross-Langenhoff, K. Hofbauer, J. Weber, A. Schultz, and J. E. Schultz (2006)
J. Biol. Chem. 281, 2841-2846
   Abstract »    Full Text »    PDF »
The Structure of Phytochrome: A Picture Is Worth a Thousand Spectra.
N. C. Rockwell and J. C. Lagarias (2006)
PLANT CELL 18, 4-14
   Full Text »    PDF »
Tumor necrosis factor-{alpha}-dependent expression of phosphodiesterase 2: role in endothelial hyperpermeability.
J. Seybold, D. Thomas, M. Witzenrath, S. Boral, A. C. Hocke, A. Burger, A. Hatzelmann, H. Tenor, C. Schudt, M. Krull, et al. (2005)
Blood 105, 3569-3576
   Abstract »    Full Text »    PDF »
Asymmetric Interaction between Rod Cyclic GMP Phosphodiesterase {gamma} Subunits and {alpha}{beta} Subunits.
L.-W. Guo, J. E. Grant, A. R. Hajipour, H. Muradov, M. Arbabian, N. O. Artemyev, and A. E. Ruoho (2005)
J. Biol. Chem. 280, 12585-12592
   Abstract »    Full Text »    PDF »
Structural and Functional Features in Human PDE5A1 Regulatory Domain That Provide for Allosteric cGMP Binding, Dimerization, and Regulation.
R. Zoraghi, E. P. Bessay, J. D. Corbin, and S. H. Francis (2005)
J. Biol. Chem. 280, 12051-12063
   Abstract »    Full Text »    PDF »
Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: Modes of ligand binding and dimerization.
S. E. Martinez, S. Bruder, A. Schultz, N. Zheng, J. E. Schultz, J. A. Beavo, and J. U. Linder (2005)
PNAS 102, 3082-3087
   Abstract »    Full Text »    PDF »
The cyanobacterial tandem GAF domains from the cyaB2 adenylyl cyclase signal via both cAMP-binding sites.
S. Bruder, J. U. Linder, S. E. Martinez, N. Zheng, J. A. Beavo, and J. E. Schultz (2005)
PNAS 102, 3088-3092
   Abstract »    Full Text »    PDF »
Trypanosome Cyclic Nucleotide Phosphodiesterase 2B Binds cAMP through Its GAF-A Domain.
S. Laxman, A. Rascon, and J. A. Beavo (2005)
J. Biol. Chem. 280, 3771-3779
   Abstract »    Full Text »    PDF »
Real-time Monitoring of the PDE2 Activity of Live Cells: HORMONE-STIMULATED cAMP HYDROLYSIS IS FASTER THAN HORMONE-STIMULATED cAMP SYNTHESIS.
V. O. Nikolaev, S. Gambaryan, S. Engelhardt, U. Walter, and M. J. Lohse (2005)
J. Biol. Chem. 280, 1716-1719
   Abstract »    Full Text »    PDF »
Harnessing phytochrome's glowing potential.
A. J. Fischer and J. C. Lagarias (2004)
PNAS 101, 17334-17339
   Abstract »    Full Text »    PDF »
Molecular Determinants of cGMP Binding to Chicken Cone Photoreceptor Phosphodiesterase.
D. Huang, T. R. Hinds, S. E. Martinez, C. Doneanu, and J. A. Beavo (2004)
J. Biol. Chem. 279, 48143-48151
   Abstract »    Full Text »    PDF »
Molecular Determinants for Cyclic Nucleotide Binding to the Regulatory Domains of Phosphodiesterase 2A.
A. Y. Wu, X.-B. Tang, S. E. Martinez, K. Ikeda, and J. A. Beavo (2004)
J. Biol. Chem. 279, 37928-37938
   Abstract »    Full Text »    PDF »
In Vivo Reconstitution of the Negative Feedback in Nitric Oxide/cGMP Signaling: Role of Phosphodiesterase Type 5 Phosphorylation.
F. Mullershausen, M. Russwurm, D. Koesling, and A. Friebe (2004)
Mol. Biol. Cell 15, 4023-4030
   Abstract »    Full Text »    PDF »
The Oligomerization State Determines Regulatory Properties and Inhibitor Sensitivity of Type 4 cAMP-specific Phosphodiesterases.
W. Richter and M. Conti (2004)
J. Biol. Chem. 279, 30338-30348
   Abstract »    Full Text »    PDF »
G Protein Signaling: Insights from New Structures.
A. M. Preininger and H. E. Hamm (2004)
Sci. STKE 2004, re3
   Abstract »    Full Text »    PDF »
Properties and Functions of GAF Domains in Cyclic Nucleotide Phosphodiesterases and Other Proteins.
R. Zoraghi, J. D. Corbin, and S. H. Francis (2004)
Mol. Pharmacol. 65, 267-278
   Full Text »    PDF »
Cyclic Nucleotide Phosphodiesterase Activity, Expression, and Targeting in Cells of the Cardiovascular System.
D. H. Maurice, D. Palmer, D. G. Tilley, H. A. Dunkerley, S. J. Netherton, D. R. Raymond, H. S. Elbatarny, and S. L. Jimmo (2003)
Mol. Pharmacol. 64, 533-546
   Abstract »    Full Text »    PDF »
Cyclic GMP Phosphodiesterases and Regulation of Smooth Muscle Function.
S. D. Rybalkin, C. Yan, K. E. Bornfeldt, and J. A. Beavo (2003)
Circ. Res. 93, 280-291
   Abstract »    Full Text »    PDF »
The GAFa Domains of Rod cGMP-phosphodiesterase 6 Determine the Selectivity of the Enzyme Dimerization.
K. G. Muradov, K. K. Boyd, S. E. Martinez, J. A. Beavo, and N. O. Artemyev (2003)
J. Biol. Chem. 278, 10594-10601
   Abstract »    Full Text »    PDF »
GAF Domains: Cyclic Nucleotides Come Full Circle.
J. H. Hurley (2003)
Sci. STKE 2003, pe1
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882