Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

PNAS 99 (24): 15357-15362

Copyright © 2002 by the National Academy of Sciences.

Nonlinear partial differential equations and applications


BIOLOGICAL SCIENCES / BIOCHEMISTRY

Structure and function from the circadian clock protein KaiA of Synechococcus elongatus: A potential clock input mechanism

Stanly B. Williams*,{dagger}, Ioannis Vakonakis{dagger},{ddagger}, Susan S. Golden*,§, and Andy C. LiWang{ddagger}

Departments of *Biology and {ddagger}Biochemistry and Biophysics, Texas A&M University, College Station, TX 77843

Received for publication August 26, 2002.

Abstract: In the cyanobacterium Synechococcus elongatus (PCC 7942) the proteins KaiA, KaiB, and KaiC are required for circadian clock function. We deduced a circadian clock function for KaiA from a combination of biochemical and structural data. Both KaiA and its isolated carboxyl-terminal domain (KaiA180C) stimulated KaiC autophosphorylation and facilitated attenuation of KaiC autophosphorylation by KaiB. An amino-terminal domain (KaiA135N) had no function in the autophosphorylation assay. NMR structure determination showed that KaiA135N is a pseudo-receiver domain. We propose that this pseudo-receiver is a timing input-device that regulates KaiA stimulation of KaiC autophosphorylation, which in turn is essential for circadian timekeeping.


{dagger} S.B.W. and I.V. contributed equally to this work.

§ To whom correspondence regarding circadian aspects should be addressed. E-mail: sgolden{at}tamu.edu.

To whom correspondence regarding structural aspects should be addressed. E-mail: andy-liwang{at}tamu.edu.

Edited by Robert Haselkorn, University of Chicago, Chicago, IL, and approved September 17, 2002

This paper was submitted directly (Track II) to the PNAS office.

Data deposition: The crystal structures and coordinates reported in this paper have been deposited in the Protein Data Bank, www.rcsb.org (PBD ID codes 1M2E and 1M2F).


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Elucidation of the Role of Clp Protease Components in Circadian Rhythm by Genetic Deletion and Overexpression in Cyanobacteria.
K. Imai, Y. Kitayama, and T. Kondo (2013)
J. Bacteriol. 195, 4517-4526
   Abstract »    Full Text »    PDF »
Nuclear Magnetic Resonance Spectroscopy of the Circadian Clock of Cyanobacteria.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2013)
Integr. Comp. Biol. 53, 93-102
   Abstract »    Full Text »    PDF »
Profile of Susan S. Golden.
S. Gupta (2013)
PNAS 110, 8758-8760
   Full Text »    PDF »
Biochemical analysis of three putative KaiC clock proteins from Synechocystis sp. PCC 6803 suggests their functional divergence.
A. Wiegard, A. K. Dorrich, H.-T. Deinzer, C. Beck, A. Wilde, J. Holtzendorff, and I. M. Axmann (2013)
Microbiology 159, 948-958
   Abstract »    Full Text »    PDF »
Oxidized quinones signal onset of darkness directly to the cyanobacterial circadian oscillator.
Y.-I. Kim, D. J. Vinyard, G. M. Ananyev, G. C. Dismukes, and S. S. Golden (2012)
PNAS 109, 17765-17769
   Abstract »    Full Text »    PDF »
Rhythmic ring-ring stacking drives the circadian oscillator clockwise.
Y.-G. Chang, R. Tseng, N.-W. Kuo, and A. LiWang (2012)
PNAS 109, 16847-16851
   Abstract »    Full Text »    PDF »
The Roles of the Dimeric and Tetrameric Structures of the Clock Protein KaiB in the Generation of Circadian Oscillations in Cyanobacteria.
R. Murakami, R. Mutoh, R. Iwase, Y. Furukawa, K. Imada, K. Onai, M. Morishita, S. Yasui, K. Ishii, J. O. Valencia Swain, et al. (2012)
J. Biol. Chem. 287, 29506-29515
   Abstract »    Full Text »    PDF »
RpaB, Another Response Regulator Operating Circadian Clock-dependent Transcriptional Regulation in Synechococcus elongatus PCC 7942.
M. Hanaoka, N. Takai, N. Hosokawa, M. Fujiwara, Y. Akimoto, N. Kobori, H. Iwasaki, T. Kondo, and K. Tanaka (2012)
J. Biol. Chem. 287, 26321-26327
   Abstract »    Full Text »    PDF »
Generic temperature compensation of biological clocks by autonomous regulation of catalyst concentration.
T. S. Hatakeyama and K. Kaneko (2012)
PNAS 109, 8109-8114
   Abstract »    Full Text »    PDF »
Flexibility of the C-terminal, or CII, ring of KaiC governs the rhythm of the circadian clock of cyanobacteria.
Y.-G. Chang, N.-W. Kuo, R. Tseng, and A. LiWang (2011)
PNAS 108, 14431-14436
   Abstract »    Full Text »    PDF »
Hyaloperonospora arabidopsidis ATR1 effector is a repeat protein with distributed recognition surfaces.
S. Chou, K. V. Krasileva, J. M. Holton, A. D. Steinbrenner, T. Alber, and B. J. Staskawicz (2011)
PNAS 108, 13323-13328
   Abstract »    Full Text »    PDF »
Evolution of time-keeping mechanisms: early emergence and adaptation to photoperiod.
R. A. Hut and D. G. M. Beersma (2011)
Phil Trans R Soc B 366, 2141-2154
   Abstract »    Full Text »    PDF »
Robust circadian clocks from coupled protein-modification and transcription-translation cycles.
D. Zwicker, D. K. Lubensky, and P. R. ten Wolde (2010)
PNAS 107, 22540-22545
   Abstract »    Full Text »    PDF »
The KaiA protein of the cyanobacterial circadian oscillator is modulated by a redox-active cofactor.
T. L. Wood, J. Bridwell-Rabb, Y.-I. Kim, T. Gao, Y.-G. Chang, A. LiWang, D. P. Barondeau, and S. S. Golden (2010)
PNAS 107, 5804-5809
   Abstract »    Full Text »    PDF »
A Novel Allele of kaiA Shortens the Circadian Period and Strengthens Interaction of Oscillator Components in the Cyanobacterium Synechococcus elongatus PCC 7942.
Y. Chen, Y.-I. Kim, S. R. Mackey, C. K. Holtman, A. LiWang, and S. S. Golden (2009)
J. Bacteriol. 191, 4392-4400
   Abstract »    Full Text »    PDF »
The Evolution of the Cyanobacterial Posttranslational Clock from a Primitive "Phoscillator".
M. J.P. Simons (2009)
J Biol Rhythms 24, 175-182
   Abstract »    PDF »
Combinatorial Regulation by a Novel Arrangement of FruA and MrpC2 Transcription Factors during Myxococcus xanthus Development.
S. Mittal and L. Kroos (2009)
J. Bacteriol. 191, 2753-2763
   Abstract »    Full Text »    PDF »
A combination of unusual transcription factors binds cooperatively to control Myxococcus xanthus developmental gene expression.
S. Mittal and L. Kroos (2009)
PNAS 106, 1965-1970
   Abstract »    Full Text »    PDF »
Phosphorylation-independent activation of the atypical response regulator NblR.
D. Ruiz, P. Salinas, M. L. Lopez-Redondo, M. L. Cayuela, A. Marina, and A. Contreras (2008)
Microbiology 154, 3002-3015
   Abstract »    Full Text »    PDF »
The day/night switch in KaiC, a central oscillator component of the circadian clock of cyanobacteria.
Y.-I. Kim, G. Dong, C. W. Carruthers Jr, S. S. Golden, and A. LiWang (2008)
PNAS 105, 12825-12830
   Abstract »    Full Text »    PDF »
Structural model of the circadian clock KaiB-KaiC complex and mechanism for modulation of KaiC phosphorylation.
R. Pattanayek, D. R. Williams, S. Pattanayek, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli (2008)
EMBO J. 27, 1767-1778
   Abstract »    Full Text »    PDF »
Dual KaiC-based oscillations constitute the circadian system of cyanobacteria.
Y. Kitayama, T. Nishiwaki, K. Terauchi, and T. Kondo (2008)
Genes & Dev. 22, 1513-1521
   Abstract »    Full Text »    PDF »
Regulation of Circadian Clock Gene Expression by Phosphorylation States of KaiC in Cyanobacteria.
Y. Murayama, T. Oyama, and T. Kondo (2008)
J. Bacteriol. 190, 1691-1698
   Abstract »    Full Text »    PDF »
Ordered Phosphorylation Governs Oscillation of a Three-Protein Circadian Clock.
M. J. Rust, J. S. Markson, W. S. Lane, D. S. Fisher, and E. K. O'Shea (2007)
Science 318, 809-812
   Abstract »    Full Text »    PDF »
The cyanobacterial circadian clock is based on the intrinsic ATPase activity of KaiC.
C. R. McClung (2007)
PNAS 104, 16727-16728
   Full Text »    PDF »
ATPase activity of KaiC determines the basic timing for circadian clock of cyanobacteria.
K. Terauchi, Y. Kitayama, T. Nishiwaki, K. Miwa, Y. Murayama, T. Oyama, and T. Kondo (2007)
PNAS 104, 16377-16381
   Abstract »    Full Text »    PDF »
A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria.
T. Nishiwaki, Y. Satomi, Y. Kitayama, K. Terauchi, R. Kiyohara, T. Takao, and T. Kondo (2007)
EMBO J. 26, 4029-4037
   Abstract »    Full Text »    PDF »
An allosteric model of circadian KaiC phosphorylation.
J. S. van Zon, D. K. Lubensky, P. R. H. Altena, and P. R. ten Wolde (2007)
PNAS 104, 7420-7425
   Abstract »    Full Text »    PDF »
Integrating the Circadian Oscillator into the Life of the Cyanobacterial Cell.
S. S. Golden (2007)
Cold Spring Harb Symp Quant Biol 72, 331-338
   Abstract »    PDF »
labA: a novel gene required for negative feedback regulation of the cyanobacterial circadian clock protein KaiC.
Y. Taniguchi, M. Katayama, R. Ito, N. Takai, T. Kondo, and T. Oyama (2007)
Genes & Dev. 21, 60-70
   Abstract »    Full Text »    PDF »
No Promoter Left Behind: Global Circadian Gene Expression in Cyanobacteria.
M. A. Woelfle and C. H. Johnson (2006)
J Biol Rhythms 21, 419-431
   Abstract »    PDF »
Quinone sensing by the circadian input kinase of the cyanobacterial circadian clock.
N. B. Ivleva, T. Gao, A. C. LiWang, and S. S. Golden (2006)
PNAS 103, 17468-17473
   Abstract »    Full Text »    PDF »
Circadian rhythms in gene transcription imparted by chromosome compaction in the cyanobacterium Synechococcus elongatus.
R. M. Smith and S. B. Williams (2006)
PNAS 103, 8564-8569
   Abstract »    Full Text »    PDF »
Analysis of KaiA-KaiC protein interactions in the cyano-bacterial circadian clock using hybrid structural methods.
R. Pattanayek, D. R. Williams, S. Pattanayek, Y. Xu, T. Mori, C. H. Johnson, P. L. Stewart, and M. Egli (2006)
EMBO J. 25, 2017-2028
   Abstract »    Full Text »    PDF »
Functionally Important Substructures of Circadian Clock Protein KaiB in a Unique Tetramer Complex.
R. Iwase, K. Imada, F. Hayashi, T. Uzumaki, M. Morishita, K. Onai, Y. Furukawa, K. Namba, and M. Ishiura (2005)
J. Biol. Chem. 280, 43141-43149
   Abstract »    Full Text »    PDF »
Stability of the Synechococcus elongatus PCC 7942 circadian clock under directed anti-phase expression of the kai genes.
J. L. Ditty, S. R. Canales, B. E. Anderson, S. B. Williams, and S. S. Golden (2005)
Microbiology 151, 2605-2613
   Abstract »    Full Text »    PDF »
Tetrameric Architecture of the Circadian Clock Protein KaiB: A NOVEL INTERFACE FOR INTERMOLECULAR INTERACTIONS AND ITS IMPACT ON THE CIRCADIAN RHYTHM.
K. Hitomi, T. Oyama, S. Han, A. S. Arvai, and E. D. Getzoff (2005)
J. Biol. Chem. 280, 19127-19135
   Abstract »    Full Text »    PDF »
LdpA: a component of the circadian clock senses redox state of the cell.
N. B. Ivleva, M. R. Bramlett, P. A. Lindahl, and S. S. Golden (2005)
EMBO J. 24, 1202-1210
   Abstract »    Full Text »    PDF »
No Transcription-Translation Feedback in Circadian Rhythm of KaiC Phosphorylation.
J. Tomita, M. Nakajima, T. Kondo, and H. Iwasaki (2005)
Science 307, 251-254
   Abstract »    Full Text »    PDF »
Roles of Two ATPase-Motif-containing Domains in Cyanobacterial Circadian Clock Protein KaiC.
F. Hayashi, N. Itoh, T. Uzumaki, R. Iwase, Y. Tsuchiya, H. Yamakawa, M. Morishita, K. Onai, S. Itoh, and M. Ishiura (2004)
J. Biol. Chem. 279, 52331-52337
   Abstract »    Full Text »    PDF »
Circadian Timing Mechanism in the Prokaryotic Clock System of Cyanobacteria.
H. Iwasaki and T. Kondo (2004)
J Biol Rhythms 19, 436-444
   Abstract »    PDF »
Role of KaiC phosphorylation in the circadian clock system of Synechococcus elongatus PCC 7942.
T. Nishiwaki, Y. Satomi, M. Nakajima, C. Lee, R. Kiyohara, H. Kageyama, Y. Kitayama, M. Temamoto, A. Yamaguchi, A. Hijikata, et al. (2004)
PNAS 101, 13927-13932
   Abstract »    Full Text »    PDF »
Identification of key phosphorylation sites in the circadian clock protein KaiC by crystallographic and mutagenetic analyses.
Y. Xu, T. Mori, R. Pattanayek, S. Pattanayek, M. Egli, and C. H. Johnson (2004)
PNAS 101, 13933-13938
   Abstract »    Full Text »    PDF »
Meshing the gears of the cyanobacterial circadian clock.
S. S. Golden (2004)
PNAS 101, 13697-13698
   Full Text »    PDF »
Circadian Rhythms in the Synthesis and Degradation of a Master Clock Protein KaiC in Cyanobacteria.
K. Imai, T. Nishiwaki, T. Kondo, and H. Iwasaki (2004)
J. Biol. Chem. 279, 36534-36539
   Abstract »    Full Text »    PDF »
Circadian Rhythms in the Thermophilic Cyanobacterium Thermosynechococcus elongatus: Compensation of Period Length over a Wide Temperature Range.
K. Onai, M. Morishita, S. Itoh, K. Okamoto, and M. Ishiura (2004)
J. Bacteriol. 186, 4972-4977
   Abstract »    Full Text »    PDF »
Structure and Molecular Phylogeny of sasA Genes in Cyanobacteria: Insights into Evolution of the Prokaryotic Circadian System.
V. Dvornyk, H.-W. Deng, and E. Nevo (2004)
Mol. Biol. Evol. 21, 1468-1476
   Abstract »    Full Text »    PDF »
Structure of the C-terminal domain of the clock protein KaiA in complex with a KaiC-derived peptide: Implications for KaiC regulation.
I. Vakonakis and A. C. LiWang (2004)
PNAS 101, 10925-10930
   Abstract »    Full Text »    PDF »
Crystal Structure of Circadian Clock Protein KaiA from Synechococcus elongatus.
S. Ye, I. Vakonakis, T. R. Ioerger, A. C. LiWang, and J. C. Sacchettini (2004)
J. Biol. Chem. 279, 20511-20518
   Abstract »    Full Text »    PDF »
Anabaena circadian clock proteins KaiA and KaiB reveal a potential common binding site to their partner KaiC.
R. G. Garces, N. Wu, W. Gillon, and E. F. Pai (2004)
EMBO J. 23, 1688-1698
   Abstract »    Full Text »    PDF »
PsfR, a factor that stimulates psbAI expression in the cyanobacterium Synechococcus elongatus PCC 7942.
C. Thomas, C. R. Andersson, S. R. Canales, and S. S. Golden (2004)
Microbiology 150, 1031-1040
   Abstract »    Full Text »    PDF »
NMR structure of the KaiC-interacting C-terminal domain of KaiA, a circadian clock protein: Implications for KaiA-KaiC interaction.
I. Vakonakis, J. Sun, T. Wu, A. Holzenburg, S. S. Golden, and A. C. LiWang (2004)
PNAS 101, 1479-1484
   Abstract »    Full Text »    PDF »
A Type-1 Phosphoprotein Phosphatase from a Dinoflagellate as a Possible Component of the Circadian Mechanism.
J. C. Comolli, T. Fagan, and J. W. Hastings (2003)
J Biol Rhythms 18, 367-376
   Abstract »    PDF »
Biochemical Properties of CikA, an Unusual Phytochrome-like Histidine Protein Kinase That Resets the Circadian Clock in Synechococcus elongatus PCC 7942.
M. Mutsuda, K.-P. Michel, X. Zhang, B. L. Montgomery, and S. S. Golden (2003)
J. Biol. Chem. 278, 19102-19110
   Abstract »    Full Text »    PDF »
Cyanobacterial circadian clockwork: roles of KaiA, KaiB and the kaiBC promoter in regulating KaiC.
Y. Xu, T. Mori, and C. H. Johnson (2003)
EMBO J. 22, 2117-2126
   Abstract »    Full Text »    PDF »
KaiB functions as an attenuator of KaiC phosphorylation in the cyanobacterial circadian clock system.
Y. Kitayama, H. Iwasaki, T. Nishiwaki, and T. Kondo (2003)
EMBO J. 22, 2127-2134
   Abstract »    Full Text »    PDF »
Think like a bacterium: Conference on Bacterial Neural Networks.
S. S. Golden (2003)
EMBO Rep. 4, 15-17
   Full Text »
Nonlinear partial differential equations and applications: KaiA-stimulated KaiC phosphorylation in circadian timing loops in cyanobacteria.
H. Iwasaki, T. Nishiwaki, Y. Kitayama, M. Nakajima, and T. Kondo (2002)
PNAS 99, 15788-15793
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882