Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

PNAS 99 (9): 6041-6046

Copyright © 2002 by the National Academy of Sciences.


The bimodal regulation of epidermal growth factor signaling by human Sprouty proteins

James E. Egan*, Amy B. Hall{dagger}, Bogdan A. Yatsula{dagger}, and Dafna Bar-Sagi{dagger},{ddagger}

{dagger}Department of Molecular Genetics and Microbiology and *Graduate Program in Molecular Pharmacology, State University of New York, Stony Brook, NY 11794-5222

Accepted for publication March 6, 2002.

Received for publication July 22, 2001.

Abstract: Signal transduction through epidermal growth factor receptors (EGFRs) is essential for the growth and development of multicellular organisms. A genetic screen for regulators of EGFR signaling has led to the identification of Sprouty, a cell autonomous inhibitor of EGF signaling that is transcriptionally induced by the pathway. However, the molecular mechanisms by which Sprouty exerts its antagonistic effect remain largely unknown. Here we have used transient expression in human cells to investigate the functional properties of human Sprouty (hSpry) proteins. Ectopically expressed full-length hSpry1 and hSpry2 induce the potentiation of EGFR-mediated mitogen-activated protein (MAP) kinase activation. In contrast, truncation mutants of hSpry1 and hSpry2 containing the highly conserved carboxyl-terminal cysteine-rich domain inhibit EGF-induced MAP kinase activation. The potentiating effect of the full-length hSpry2 proteins on EGF signaling is mediated by the amino-terminal domain and results from the sequestration of c-Cbl, which in turn leads to the inhibition of EGFR ubiquitination and degradation. These results indicate that hSpry2 can function both as a negative and positive regulator of EGFR-mediated MAP kinase signaling in a domain-dependent fashion. A dual function of this kind could provide a mechanism for achieving proper balance between the activation and repression of EGFR signaling.

{ddagger} To whom reprint requests should be addressed. E-mail: barsagi{at}

Communicated by Joseph Schlessinger, Yale University School of Medicine, New Haven, CT

Receptor Tyrosine Kinase Ubiquitylation Involves the Dynamic Regulation of Cbl-Spry2 by Intersectin 1 and the Shp2 Tyrosine Phosphatase.
M. N. Okur, A. Russo, and J. P. O'Bryan (2014)
Mol. Cell. Biol. 34, 271-279
   Abstract »    Full Text »    PDF »
Regulation of EGFR trafficking and cell signaling by Sprouty2 and MIG6 in lung cancer cells.
A. M. Walsh and M. J. Lazzara (2013)
J. Cell Sci. 126, 4339-4348
   Abstract »    Full Text »    PDF »
Sprouty Proteins Are Negative Regulators of Interferon (IFN) Signaling and IFN-inducible Biological Responses.
B. Sharma, S. Joshi, A. Sassano, B. Majchrzak, S. Kaur, P. Aggarwal, B. Nabet, M. Bulic, B. L. Stein, B. McMahon, et al. (2012)
J. Biol. Chem. 287, 42352-42360
   Abstract »    Full Text »    PDF »
Intersectin 1 Enhances Cbl Ubiquitylation of Epidermal Growth Factor Receptor through Regulation of Sprouty2-Cbl Interaction.
M. N. Okur, J. Ooi, C. W. Fong, N. Martinez, C. Garcia-Dominguez, J. M. Rojas, G. Guy, and J. P. O'Bryan (2012)
Mol. Cell. Biol. 32, 817-825
   Abstract »    Full Text »    PDF »
Regulation of Cellular Levels of Sprouty2 Protein by Prolyl Hydroxylase Domain and von Hippel-Lindau Proteins.
K. Anderson, K. A. Nordquist, X. Gao, K. C. Hicks, B. Zhai, S. P. Gygi, and T. B. Patel (2011)
J. Biol. Chem. 286, 42027-42036
   Abstract »    Full Text »    PDF »
Coexpression Network Analysis Identifies Transcriptional Modules Related to Proastrocytic Differentiation and Sprouty Signaling in Glioma.
A. E. Ivliev, P. A. C. 't Hoen, and M. G. Sergeeva (2010)
Cancer Res. 70, 10060-10070
   Abstract »    Full Text »    PDF »
Cumulus cell gene expression following the LH surge in bovine preovulatory follicles: potential early markers of oocyte competence.
M. Assidi, S. J. Dieleman, and M.-A. Sirard (2010)
Reproduction 140, 835-852
   Abstract »    Full Text »    PDF »
Hypoxia and nickel inhibit histone demethylase JMJD1A and repress Spry2 expression in human bronchial epithelial BEAS-2B cells.
H. Chen, T. Kluz, R. Zhang, and M. Costa (2010)
Carcinogenesis 31, 2136-2144
   Abstract »    Full Text »    PDF »
Establishment of Extracellular Signal-Regulated Kinase 1/2 Bistability and Sustained Activation through Sprouty 2 and Its Relevance for Epithelial Function.
W. Liu, K. Tundwal, Q. Liang, N. Goplen, S. Rozario, N. Quayum, M. Gorska, S. Wenzel, S. Balzar, and R. Alam (2010)
Mol. Cell. Biol. 30, 1783-1799
   Abstract »    Full Text »    PDF »
HECT Domain-containing E3 Ubiquitin Ligase Nedd4 Interacts with and Ubiquitinates Sprouty2.
F. Edwin, K. Anderson, and T. B. Patel (2010)
J. Biol. Chem. 285, 255-264
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factors and Epidermal Growth Factor Cooperate with Oocyte-Derived Members of the TGFbeta Superfamily to Regulate Spry2 mRNA Levels in Mouse Cumulus Cells.
K. Sugiura, Y.-Q. Su, Q. Li, K. Wigglesworth, M. M. Matzuk, and J. J. Eppig (2009)
Biol Reprod 81, 833-841
   Abstract »    Full Text »    PDF »
Intermolecular Interactions of Sprouty Proteins and Their Implications in Development and Disease.
F. Edwin, K. Anderson, C. Ying, and T. B. Patel (2009)
Mol. Pharmacol. 76, 679-691
   Abstract »    Full Text »    PDF »
Breakdown of endocytosis in the oncogenic activation of receptor tyrosine kinases.
J. V. Abella and M. Park (2009)
Am J Physiol Endocrinol Metab 296, E973-E984
   Abstract »    Full Text »    PDF »
Regulation of EphB2 activation and cell repulsion by feedback control of the MAPK pathway.
A. Poliakov, M. L. Cotrina, A. Pasini, and D. G. Wilkinson (2008)
J. Cell Biol. 183, 933-947
   Abstract »    Full Text »    PDF »
Modulation of Endocrine Pancreas Development but not {beta}-Cell Carcinogenesis by Sprouty4.
F. Jaggi, M. A. Cabrita, A.-K. T. Perl, and G. Christofori (2008)
Mol. Cancer Res. 6, 468-482
   Abstract »    Full Text »    PDF »
A Novel Role of Sprouty 2 in Regulating Cellular Apoptosis.
F. Edwin and T. B. Patel (2008)
J. Biol. Chem. 283, 3181-3190
   Abstract »    Full Text »    PDF »
Evidence That Sprouty 2 Is Necessary for Sarcoma Formation by H-Ras Oncogene-transformed Human Fibroblasts.
P. Lito, B. D. Mets, S. Kleff, S. O'Reilly, V. M. Maher, and J. J. McCormick (2008)
J. Biol. Chem. 283, 2002-2009
   Abstract »    Full Text »    PDF »
Tesk1 Interacts with Spry2 to Abrogate Its Inhibition of ERK Phosphorylation Downstream of Receptor Tyrosine Kinase Signaling.
S. Chandramouli, C. Y. Yu, P. Yusoff, D.-H. Lao, H. F. Leong, K. Mizuno, and G. R. Guy (2008)
J. Biol. Chem. 283, 1679-1691
   Abstract »    Full Text »    PDF »
Down-Regulation of Sprouty2 in Non-Small Cell Lung Cancer Contributes to Tumor Malignancy via Extracellular Signal-Regulated Kinase Pathway-Dependent and -Independent Mechanisms.
H. Sutterluty, C.-E. Mayer, U. Setinek, J. Attems, S. Ovtcharov, M. Mikula, W. Mikulits, M. Micksche, and W. Berger (2007)
Mol. Cancer Res. 5, 509-520
   Abstract »    Full Text »    PDF »
Dominant-Negative Activator Protein 1 (TAM67) Targets Cyclooxygenase-2 and Osteopontin under Conditions in which It Specifically Inhibits Tumorigenesis.
C. P. Matthews, A. M. Birkholz, A. R. Baker, C. M. Perella, G. R. Beck Jr., M. R. Young, and N. H. Colburn (2007)
Cancer Res. 67, 2430-2438
   Abstract »    Full Text »    PDF »
The VASP-Spred-Sprouty Domain Puzzle.
K. Bundschu, U. Walter, and K. Schuh (2006)
J. Biol. Chem. 281, 36477-36481
   Abstract »    Full Text »    PDF »
A Functional Interaction between Sprouty Proteins and Caveolin-1.
M. A. Cabrita, F. Jaggi, S. P. Widjaja, and G. Christofori (2006)
J. Biol. Chem. 281, 29201-2912
   Abstract »    Full Text »    PDF »
Dual Effects of Sprouty1 on TCR Signaling Depending on the Differentiation State of the T Cell.
H. Choi, S.-Y. Cho, R. H. Schwartz, and K. Choi (2006)
J. Immunol. 176, 6034-6045
   Abstract »    Full Text »    PDF »
Role of Ubiquitylation in Cellular Membrane Transport.
O. Staub and D. Rotin (2006)
Physiol Rev 86, 669-707
   Abstract »    Full Text »    PDF »
Regulation of Sprouty Stability by Mnk1-Dependent Phosphorylation.
J. DaSilva, L. Xu, H. J. Kim, W. T. Miller, and D. Bar-Sagi (2006)
Mol. Cell. Biol. 26, 1898-1907
   Abstract »    Full Text »    PDF »
The Tumor Suppressor PTEN Is Necessary for Human Sprouty 2-mediated Inhibition of Cell Proliferation.
F. Edwin, R. Singh, R. Endersby, S. J. Baker, and T. B. Patel (2006)
J. Biol. Chem. 281, 4816-4822
   Abstract »    Full Text »    PDF »
Efficient suppression of FGF-2-induced ERK activation by the cooperative interaction among mammalian Sprouty isoforms.
K.-i. Ozaki, S. Miyazaki, S. Tanimura, and M. Kohno (2005)
J. Cell Sci. 118, 5861-5871
   Abstract »    Full Text »    PDF »
Expression and regulation of Sprouty-2 in the granulosa-lutein cells of the corpus luteum.
R. Haimov-Kochman, A. Ravhon, D. Prus, C. Greenfield, Z. Finci-Yeheskel, D. S.Goldman-Wohl, S. Natanson-Yaron, R. Reich, S. Yagel, and A. Hurwitz (2005)
Mol. Hum. Reprod. 11, 537-542
   Abstract »    Full Text »    PDF »
Sprouty2 acts at the Cbl/CIN85 interface to inhibit epidermal growth factor receptor downregulation.
K. Haglund, M. H. H. Schmidt, E. S. M. Wong, G. R. Guy, and I. Dikic (2005)
EMBO Rep. 6, 635-641
   Abstract »    Full Text »    PDF »
Phosphorylation of Carboxyl-terminal Tyrosines Modulates the Specificity of Sprouty-2 Inhibition of Different Signaling Pathways.
C. Rubin, Y. Zwang, N. Vaisman, D. Ron, and Y. Yarden (2005)
J. Biol. Chem. 280, 9735-9744
   Abstract »    Full Text »    PDF »
Regulation of isthmic Fgf8 signal by sprouty2.
A. Suzuki-Hirano, T. Sato, and H. Nakamura (2005)
Development 132, 257-265
   Abstract »    Full Text »    PDF »
Ubiquitin Ligase Activity of c-Cbl Guides the Epidermal Growth Factor Receptor into Clathrin-coated Pits by Two Distinct Modes of Eps15 Recruitment.
A. A. de Melker, G. van der Horst, and J. Borst (2004)
J. Biol. Chem. 279, 55465-55473
   Abstract »    Full Text »    PDF »
FRS2-dependent SRC activation is required for fibroblast growth factor receptor-induced phosphorylation of Sprouty and suppression of ERK activity.
X. Li, V. G. Brunton, H. R. Burgar, L. M. Wheldon, and J. K. Heath (2004)
J. Cell Sci. 117, 6007-6017
   Abstract »    Full Text »    PDF »
SPRY2 Is an Inhibitor of the Ras/Extracellular Signal-Regulated Kinase Pathway in Melanocytes and Melanoma Cells with Wild-Type BRAF but Not with the V599E Mutant.
D. Tsavachidou, M. L. Coleman, G. Athanasiadis, S. Li, J. D. Licht, M. F. Olson, and B. L. Weber (2004)
Cancer Res. 64, 5556-5559
   Abstract »    Full Text »    PDF »
The Expression of Sprouty1, an Inhibitor of Fibroblast Growth Factor Signal Transduction, Is Decreased in Human Prostate Cancer.
B. Kwabi-Addo, J. Wang, H. Erdem, A. Vaid, P. Castro, G. Ayala, and M. Ittmann (2004)
Cancer Res. 64, 4728-4735
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Sprouty Proteins Regulates Their Ability to Inhibit Growth Factor Signaling: A Dual Feedback Loop.
J. M. Mason, D. J. Morrison, B. Bassit, M. Dimri, H. Band, J. D. Licht, and I. Gross (2004)
Mol. Biol. Cell 15, 2176-2188
   Abstract »    Full Text »    PDF »
Defective lysosomal targeting of activated fibroblast growth factor receptor 3 in achondroplasia.
J. Y. Cho, C. Guo, M. Torello, G. P. Lunstrum, T. Iwata, C. Deng, and W. A. Horton (2004)
PNAS 101, 609-614
   Abstract »    Full Text »    PDF »
The Receptor Tyrosine Kinase Regulator Sprouty1 Is a Target of the Tumor Suppressor WT1 and Important for Kidney Development.
I. Gross, D. J. Morrison, D. P. Hyink, K. Georgas, M. A. English, M. Mericskay, S. Hosono, D. Sassoon, P. D. Wilson, M. Little, et al. (2003)
J. Biol. Chem. 278, 41420-41430
   Abstract »    Full Text »    PDF »
Tyrosine Phosphorylation of Sprouty2 Enhances Its Interaction with c-Cbl and Is Crucial for Its Function.
C. W. Fong, H. F. Leong, E. S. M. Wong, J. Lim, P. Yusoff, and G. R. Guy (2003)
J. Biol. Chem. 278, 33456-33464
   Abstract »    Full Text »    PDF »
Sprouty: how does the branch manager work?.
G. R. Guy, E. S. M. Wong, P. Yusoff, S. Chandramouli, T. L. Lo, J. Lim, and C. W. Fong (2003)
J. Cell Sci. 116, 3061-3068
   Abstract »    Full Text »    PDF »
Src-mediated RGS16 Tyrosine Phosphorylation Promotes RGS16 Stability.
A. Derrien, B. Zheng, J. L. Osterhout, Y.-C. Ma, G. Milligan, M. G. Farquhar, and K. M. Druey (2003)
J. Biol. Chem. 278, 16107-16116
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882