Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 296 (5569): 879-883

Copyright © 2002 by the American Association for the Advancement of Science

Regulation of SREBP Processing and Membrane Lipid Production by Phospholipids in Drosophila

I. Y. Dobrosotskaya,* A. C. Seegmiller,* M. S. Brown,dagger J. L. Goldstein,dagger R. B. Rawson

Animal cells exert exquisite control over the physical and chemical properties of their membranes, but the mechanisms are obscure. We show that phosphatidylethanolamine, the major phospholipid in Drosophila, controls the release of sterol regulatory element-binding protein (SREBP) from Drosophila cell membranes, exerting feedback control on the synthesis of fatty acids and phospholipids. The finding that SREBP processing is controlled by different lipids in mammals and flies (sterols and phosphatidylethanolamine, respectively) suggests that an essential function of SREBP is to monitor cell membrane composition and to adjust lipid synthesis accordingly.

Department of Molecular Genetics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9046, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: mike.brown{at}utsouthwestern.edu (M.S.B.); joe.goldstein{at}utsouthwestern.edu (J.L.G.)



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting.
F. Wilfling, A. R. Thiam, M.-J. Olarte, J. Wang, R. Beck, T. J. Gould, E. S. Allgeyer, F. Pincet, J. Bewersdorf, R. V. Farese Jr, et al. (2014)
eLife Sci 3, e01607
   Abstract »    Full Text »    PDF »
Sphingosine Kinases Are Not Required for Inflammatory Responses in Macrophages.
Y. Xiong, H. J. Lee, B. Mariko, Y.-C. Lu, A. J. Dannenberg, A. S. Haka, F. R. Maxfield, E. Camerer, R. L. Proia, and T. Hla (2013)
J. Biol. Chem. 288, 32563-32573
   Abstract »    Full Text »    PDF »
Lipid metabolism in Drosophila: development and disease.
Z. Liu and X. Huang (2013)
Acta Biochim Biophys Sin 45, 44-50
   Abstract »    Full Text »    PDF »
Cholesterol through the Looking Glass: ABILITY OF ITS ENANTIOMER ALSO TO ELICIT HOMEOSTATIC RESPONSES.
I. Kristiana, W. Luu, J. Stevenson, S. Cartland, W. Jessup, J. D. Belani, S. D. Rychnovsky, and A. J. Brown (2012)
J. Biol. Chem. 287, 33897-33904
   Abstract »    Full Text »    PDF »
Drosophila, Genetic Screens, and Cardiac Function.
M. J. Wolf and H. A. Rockman (2011)
Circ. Res. 109, 794-806
   Abstract »    Full Text »    PDF »
The Sterol-sensing Domain (SSD) Directly Mediates Signal-regulated Endoplasmic Reticulum-associated Degradation (ERAD) of 3-Hydroxy-3-methylglutaryl (HMG)-CoA Reductase Isozyme Hmg2.
C. L. Theesfeld, D. Pourmand, T. Davis, R. M. Garza, and R. Y. Hampton (2011)
J. Biol. Chem. 286, 26298-26307
   Abstract »    Full Text »    PDF »
Intersection of the Multivesicular Body Pathway and Lipid Homeostasis in RNA Replication by a Positive-Strand RNA Virus.
X. Wang, A. Diaz, L. Hao, B. Gancarz, J. A. den Boon, and P. Ahlquist (2011)
J. Virol. 85, 5494-5503
   Abstract »    Full Text »    PDF »
Phospholipid homeostasis regulates lipid metabolism and cardiac function through SREBP signaling in Drosophila.
H.-Y. Lim, W. Wang, R. J. Wessells, K. Ocorr, and R. Bodmer (2011)
Genes & Dev. 25, 189-200
   Abstract »    Full Text »    PDF »
Lipid Signaling and Homeostasis: PA- Is Better than PA-H, But What About Those PIPs?.
N. T. Ktistakis (2010)
Science Signaling 3, pe46
   Abstract »    Full Text »    PDF »
Survival strategies of a sterol auxotroph.
M. Carvalho, D. Schwudke, J. L. Sampaio, W. Palm, I. Riezman, G. Dey, G. D. Gupta, S. Mayor, H. Riezman, A. Shevchenko, et al. (2010)
Development 137, 3675-3685
   Abstract »    Full Text »    PDF »
Expression of miR-33 from an SREBP2 Intron Inhibits Cholesterol Export and Fatty Acid Oxidation.
I. Gerin, L.-A. Clerbaux, O. Haumont, N. Lanthier, A. K. Das, C. F. Burant, I. A. Leclercq, O. A. MacDougald, and G. T. Bommer (2010)
J. Biol. Chem. 285, 33652-33661
   Abstract »    Full Text »    PDF »
Sphingosine 1-Phosphate Lyase Deficiency Disrupts Lipid Homeostasis in Liver.
M. Bektas, M. L. Allende, B. G. Lee, W. Chen, M. J. Amar, A. T. Remaley, J. D. Saba, and R. L. Proia (2010)
J. Biol. Chem. 285, 10880-10889
   Abstract »    Full Text »    PDF »
Sestrin as a Feedback Inhibitor of TOR That Prevents Age-Related Pathologies.
J. H. Lee, A. V. Budanov, E. J. Park, R. Birse, T. E. Kim, G. A. Perkins, K. Ocorr, M. H. Ellisman, R. Bodmer, E. Bier, et al. (2010)
Science 327, 1223-1228
   Abstract »    Full Text »    PDF »
Nuclear Receptor DHR96 Acts as a Sentinel for Low Cholesterol Concentrations in Drosophila melanogaster.
M. Bujold, A. Gopalakrishnan, E. Nally, and K. King-Jones (2010)
Mol. Cell. Biol. 30, 793-805
   Abstract »    Full Text »    PDF »
NTE1-encoded Phosphatidylcholine Phospholipase B Regulates Transcription of Phospholipid Biosynthetic Genes.
J. P. Fernandez-Murray, G. J. Gaspard, S. A. Jesch, and C. R. McMaster (2009)
J. Biol. Chem. 284, 36034-36046
   Abstract »    Full Text »    PDF »
Evolutionary conservation and adaptation in the mechanism that regulates SREBP action: what a long, strange tRIP it's been.
T. F. Osborne and P. J. Espenshade (2009)
Genes & Dev. 23, 2578-2591
   Abstract »    Full Text »    PDF »
Elimination of the CDP-ethanolamine Pathway Disrupts Hepatic Lipid Homeostasis.
R. Leonardi, M. W. Frank, P. D. Jackson, C. O. Rock, and S. Jackowski (2009)
J. Biol. Chem. 284, 27077-27089
   Abstract »    Full Text »    PDF »
The Development of a Metabolic Disease Phenotype in CTP:Phosphoethanolamine Cytidylyltransferase-deficient Mice.
M. D. Fullerton, F. Hakimuddin, A. Bonen, and M. Bakovic (2009)
J. Biol. Chem. 284, 25704-25713
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans as an emerging model for studying the basic biology of obesity.
K. T. Jones and K. Ashrafi (2009)
Dis. Model. Mech. 2, 224-229
   Abstract »    Full Text »    PDF »
Activation of Sterol Regulatory Element-binding Protein by the Caspase Drice in Drosophila Larvae.
B. Amarneh, K. A. Matthews, and R. B. Rawson (2009)
J. Biol. Chem. 284, 9674-9682
   Abstract »    Full Text »    PDF »
Lysophospholipid receptors in vertebrate development, physiology, and pathology.
A. Skoura and T. Hla (2009)
J. Lipid Res. 50, S293-S298
   Abstract »    Full Text »    PDF »
Alternative Processing of Sterol Regulatory Element Binding Protein During Larval Development in Drosophila melanogaster.
K. A. Matthews, A. S. Kunte, E. Tambe-Ebot, and R. B. Rawson (2009)
Genetics 181, 119-128
   Abstract »    Full Text »    PDF »
Gene expression profiling in human skeletal muscle during recovery from eccentric exercise.
D. J. Mahoney, A. Safdar, G. Parise, S. Melov, M. Fu, L. MacNeil, J. Kaczor, E. T. Payne, and M. A. Tarnopolsky (2008)
Am J Physiol Regulatory Integrative Comp Physiol 294, R1901-R1910
   Abstract »    Full Text »    PDF »
Substrate Recognition and Binding by RseP, an Escherichia coli Intramembrane Protease.
K. Koide, K. Ito, and Y. Akiyama (2008)
J. Biol. Chem. 283, 9562-9570
   Abstract »    Full Text »    PDF »
Identification and characterization by electrospray mass spectrometry of endogenous Drosophila sphingadienes.
H. Fyrst, X. Zhang, D. R. Herr, H. S. Byun, R. Bittman, V. H. Phan, G. L. Harris, and J. D. Saba (2008)
J. Lipid Res. 49, 597-606
   Abstract »    Full Text »    PDF »
Developmental and Metabolic Effects of Disruption of the Mouse CTP:Phosphoethanolamine Cytidylyltransferase Gene (Pcyt2).
M. D. Fullerton, F. Hakimuddin, and M. Bakovic (2007)
Mol. Cell. Biol. 27, 3327-3336
   Abstract »    Full Text »    PDF »
Identification and characterization of human ethanolaminephosphotransferase1.
Y. Horibata and Y. Hirabayashi (2007)
J. Lipid Res. 48, 503-508
   Abstract »    Full Text »    PDF »
Redirection of sphingolipid metabolism toward de novo synthesis of ethanolamine in Leishmania.
K. Zhang, J. M. Pompey, F.-F. Hsu, P. Key, P. Bandhuvula, J. D. Saba, J. Turk, and S. M. Beverley (2007)
EMBO J. 26, 1094-1104
   Abstract »    Full Text »    PDF »
Intracellular Role for Sphingosine Kinase 1 in Intestinal Adenoma Cell Proliferation.
M. Kohno, M. Momoi, M. L. Oo, J.-H. Paik, Y.-M. Lee, K. Venkataraman, Y. Ai, A. P. Ristimaki, H. Fyrst, H. Sano, et al. (2006)
Mol. Cell. Biol. 26, 7211-7223
   Abstract »    Full Text »    PDF »
Membrane lipid physiology and toxin catabolism underlie ethanol and acetic acid tolerance in Drosophila melanogaster.
K. L. Montooth, K. T. Siebenthall, and A. G. Clark (2006)
J. Exp. Biol. 209, 3837-3850
   Abstract »    Full Text »    PDF »
Metabolic Profiling of Glycerophospholipid Synthesis in Fibroblasts Loaded with Free Cholesterol and Modified Low Density Lipoproteins.
M. Binder, G. Liebisch, T. Langmann, and G. Schmitz (2006)
J. Biol. Chem. 281, 21869-21877
   Abstract »    Full Text »    PDF »
Sphingosine-1-Phosphate Phosphohydrolase Regulates Endoplasmic Reticulum-to-Golgi Trafficking of Ceramide.
P. Giussani, M. Maceyka, H. Le Stunff, A. Mikami, S. Lepine, E. Wang, S. Kelly, A. H. Merrill Jr., S. Milstien, and S. Spiegel (2006)
Mol. Cell. Biol. 26, 5055-5069
   Abstract »    Full Text »    PDF »
Phospholipid Transfer Activity of Microsomal Triacylglycerol Transfer Protein Is Sufficient for the Assembly and Secretion of Apolipoprotein B Lipoproteins.
P. Rava, G. K. Ojakian, G. S. Shelness, and M. M. Hussain (2006)
J. Biol. Chem. 281, 11019-11027
   Abstract »    Full Text »    PDF »
Disruption of the Phosphatidylserine Decarboxylase Gene in Mice Causes Embryonic Lethality and Mitochondrial Defects.
R. Steenbergen, T. S. Nanowski, A. Beigneux, A. Kulinski, S. G. Young, and J. E. Vance (2005)
J. Biol. Chem. 280, 40032-40040
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling.
C. E. Chalfant and S. Spiegel (2005)
J. Cell Sci. 118, 4605-4612
   Abstract »    Full Text »    PDF »
Gene Expression During Drosophila Wing Morphogenesis and Differentiation.
N. Ren, C. Zhu, H. Lee, and P. N. Adler (2005)
Genetics 171, 625-638
   Abstract »    Full Text »    PDF »
The crystal structures of human steroidogenic factor-1 and liver receptor homologue-1.
W. Wang, C. Zhang, A. Marimuthu, H. I. Krupka, M. Tabrizizad, R. Shelloe, U. Mehra, K. Eng, H. Nguyen, C. Settachatgul, et al. (2005)
PNAS 102, 7505-7510
   Abstract »    Full Text »    PDF »
Intramembrane aspartic acid in SCAP protein governs cholesterol-induced conformational change.
J. D. Feramisco, A. Radhakrishnan, Y. Ikeda, J. Reitz, M. S. Brown, and J. L. Goldstein (2005)
PNAS 102, 3242-3247
   Abstract »    Full Text »    PDF »
Lipid-mediated, reversible misfolding of a sterol-sensing domain protein.
A. G. Shearer and R. Y. Hampton (2005)
EMBO J. 24, 149-159
   Abstract »    Full Text »    PDF »
Regulation of the Yeast EKI1-encoded Ethanolamine Kinase by Inositol and Choline.
M. C. Kersting, H.-S. Choi, and G. M. Carman (2004)
J. Biol. Chem. 279, 35353-35359
   Abstract »    Full Text »    PDF »
Platelet-derived Growth Factor Stimulates Membrane Lipid Synthesis Through Activation of Phosphatidylinositol 3-Kinase and Sterol Regulatory Element-binding Proteins.
J.-B. Demoulin, J. Ericsson, A. Kallin, C. Rorsman, L. Ronnstrand, and C.-H. Heldin (2004)
J. Biol. Chem. 279, 35392-35402
   Abstract »    Full Text »    PDF »
Metabolic Responses to the Reduction in Palmitate Caused by Disruption of the FATB Gene in Arabidopsis.
G. Bonaventure, X. Bao, J. Ohlrogge, and M. Pollard (2004)
Plant Physiology 135, 1269-1279
   Abstract »    Full Text »    PDF »
Phospholipid Metabolism Regulated by a Transcription Factor Sensing Phosphatidic Acid.
C. J. R. Loewen, M. L. Gaspar, S. A. Jesch, C. Delon, N. T. Ktistakis, S. A. Henry, and T. P. Levine (2004)
Science 304, 1644-1647
   Abstract »    Full Text »    PDF »
Stearoyl-CoA Desaturase 1 Gene Expression Is Necessary for Fructose-mediated Induction of Lipogenic Gene Expression by Sterol Regulatory Element-binding Protein-1c-dependent and -independent Mechanisms.
M. Miyazaki, A. Dobrzyn, W. C. Man, K. Chu, H. Sampath, H.-J. Kim, and J. M. Ntambi (2004)
J. Biol. Chem. 279, 25164-25171
   Abstract »    Full Text »    PDF »
Sterol and fatty acid regulatory pathways in a Giardia lamblia-derived promoter: evidence for SREBP as an ancient transcription factor.
T. S. Worgall, S. R. Davis-Hayman, M. M. Magana, P. M. Oelkers, F. Zapata, R. A. Juliano, T. F. Osborne, T. E. Nash, and R. J. Deckelbaum (2004)
J. Lipid Res. 45, 981-988
   Abstract »    Full Text »    PDF »
The lamin B receptor of Drosophila melanogaster.
N. Wagner, D. Weber, S. Seitz, and G. Krohne (2004)
J. Cell Sci. 117, 2015-2028
   Abstract »    Full Text »    PDF »
Point-Counterpoint of Sphingosine 1-Phosphate Metabolism.
J. D. Saba and T. Hla (2004)
Circ. Res. 94, 724-734
   Abstract »    Full Text »    PDF »
Characterization of the Drosophila Sphingosine Kinases and Requirement for Sk2 in Normal Reproductive Function.
D. R. Herr, H. Fyrst, M. B. Creason, V. H. Phan, J. D. Saba, and G. L. Harris (2004)
J. Biol. Chem. 279, 12685-12694
   Abstract »    Full Text »    PDF »
Sphingosine-phosphate Lyase Enhances Stress-induced Ceramide Generation and Apoptosis.
U. Reiss, B. Oskouian, J. Zhou, V. Gupta, P. Sooriyakumaran, S. Kelly, E. Wang, A. H. Merrill Jr., and J. D. Saba (2004)
J. Biol. Chem. 279, 1281-1290
   Abstract »    Full Text »    PDF »
Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster.
H. Fyrst, D. R. Herr, G. L. Harris, and J. D. Saba (2004)
J. Lipid Res. 45, 54-62
   Abstract »    Full Text »    PDF »
Reversible Topological Organization within a Polytopic Membrane Protein Is Governed by a Change in Membrane Phospholipid Composition.
W. Zhang, M. Bogdanov, J. Pi, A. J. Pittard, and W. Dowhan (2003)
J. Biol. Chem. 278, 50128-50135
   Abstract »    Full Text »    PDF »
Cholesterol-induced conformational change in SCAP enhanced by Insig proteins and mimicked by cationic amphiphiles.
C. M. Adams, J. L. Goldstein, and M. S. Brown (2003)
PNAS 100, 10647-10652
   Abstract »    Full Text »    PDF »
Reconstitution of Sterol-regulated Endoplasmic Reticulum-to-Golgi Transport of SREBP-2 in Insect Cells by Co-expression of Mammalian SCAP and Insigs.
I. Y. Dobrosotskaya, J. L. Goldstein, M. S. Brown, and R. B. Rawson (2003)
J. Biol. Chem. 278, 35837-35843
   Abstract »    Full Text »    PDF »
The sphingosine kinase 1/sphingosine-1-phosphate pathway mediates COX-2 induction and PGE2 production in response to TNF-{alpha}.
B. J. PETTUS, J. BIELAWSKI, A. M. PORCELLI, D. L. REAMES, K. R. JOHNSON, J. MORROW, C. E. CHALFANT, L. M. OBEID, and Y. A. HANNUN (2003)
FASEB J 17, 1411-1421
   Abstract »    Full Text »    PDF »
Sphingosine Phosphate Lyase Expression Is Essential for Normal Development in Caenorhabditis elegans.
J. Mendel, K. Heinecke, H. Fyrst, and J. D. Saba (2003)
J. Biol. Chem. 278, 22341-22349
   Abstract »    Full Text »    PDF »
Sply regulation of sphingolipid signaling molecules is essential for Drosophila development.
D. R. Herr, H. Fyrst, V. Phan, K. Heinecke, R. Georges, G. L. Harris, and J. D. Saba (2003)
Development 130, 2443-2453
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: A Matter of Life or Death.
R. Ranganathan (2003)
Science 299, 1677-1679
   Abstract »    Full Text »    PDF »
Dietary Eritadenine and Ethanolamine Depress Fatty Acid Desaturase Activities by Increasing Liver Microsomal Phosphatidylethanolamine in Rats.
Y. Shimada, T. Morita, and K. Sugiyama (2003)
J. Nutr. 133, 758-765
   Abstract »    Full Text »    PDF »
Suppression of the ELO-2 FA Elongation Activity Results in Alterations of the Fatty Acid Composition and Multiple Physiological Defects, Including Abnormal Ultradian Rhythms, in Caenorhabditis elegans.
M. Kniazeva, M. Sieber, S. McCauley, K. Zhang, J. L. Watts, and M. Han (2003)
Genetics 163, 159-169
   Abstract »    Full Text »    PDF »
Dietary Polyunsaturated Fats Regulate Rat Liver Sterol Regulatory Element Binding Proteins-1 and -2 in Three Distinct Stages and by Different Mechanisms.
J. Xu, H. Cho, S. O'Malley, J. H. Y. Park, and S. D. Clarke (2002)
J. Nutr. 132, 3333-3339
   Abstract »    Full Text »    PDF »
The Role of cAMP-dependent Signaling in Receptor-recognized Forms of alpha 2-Macroglobulin-induced Cellular Proliferation.
U. K. Misra, G. Akabani, and S. V. Pizzo (2002)
J. Biol. Chem. 277, 36509-36520
   Abstract »    Full Text »    PDF »
DegS and YaeL participate sequentially in the cleavage of RseA to activate the sigma E-dependent extracytoplasmic stress response.
B. M. Alba, J. A. Leeds, C. Onufryk, C. Z. Lu, and C. A. Gross (2002)
Genes & Dev. 16, 2156-2168
   Abstract »    Full Text »    PDF »
CELL BIOLOGY: Fats, Flies, and Palmitate.
A. Nohturfft and R. Losick (2002)
Science 296, 857-858
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882