Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 296 (5573): 1644-1646

Copyright © 2002 by the American Association for the Advancement of Science

The Promise and Perils of Wnt Signaling Through beta -Catenin

Randall T. Moon,1* Bruce Bowerman,2 Michael Boutros,3 Norbert Perrimon3

Wnt pathways are involved in the control of gene expression, cell behavior, cell adhesion, and cell polarity. In addition, they often operate in combination with other signaling pathways. The Wnt/beta -catenin pathway is the best studied of the Wnt pathways and is highly conserved through evolution. In this pathway, Wnt signaling inhibits the degradation of beta -catenin, which can regulate transcription of a number of genes. Some of the genes regulated are those associated with cancer and other diseases (for example, colorectal cancer and melanomas). As a result, components of the Wnt/beta -catenin pathway are promising targets in the search for therapeutic agents. Information about Wnt pathways is available both in canonical terms and at the species level. In addition to the canonical Wnt/beta -catenin pathway, information is now available for Drosophila, Caenorhabditis elegans, and Xenopus. The STKE Connections Maps for these pathways provide an important tool in accessing this large body of complex information.

1 Howard Hughes Medical Institute, Department of Pharmacology, and Center for Developmental Biology, University of Washington School of Medicine, Seattle, WA 98195, USA.
2 Institute of Molecular Biology, University of Oregon, Eugene, OR 97403, USA.
3 Howard Hughes Medical Institute and Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
*   To whom correspondence should be addressed. E-mail: rtmoon{at}u.washington.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Glycogen Synthase Kinase-3{beta} and Cathepsin B in Diabetic Endothelial Progenitor Cell Dysfunction: An Old Player Finds a New Partner.
R. Muniyappa and J. R. Sowers (2014)
Diabetes 63, 1194-1197
   Full Text »    PDF »
IL-6-accelerated calcification by induction of ROR2 in human adipose tissue-derived mesenchymal stem cells is STAT3 dependent.
S. Fukuyo, K. Yamaoka, K. Sonomoto, K. Oshita, Y. Okada, K. Saito, Y. Yoshida, T. Kanazawa, Y. Minami, and Y. Tanaka (2014)
Rheumatology
   Abstract »    Full Text »    PDF »
Coupling G2/M arrest to the Wnt/{beta}-catenin pathway restrains pancreatic adenocarcinoma.
S. Sarkar, C. Mandal, R. Sangwan, and C. Mandal (2014)
Endocr. Relat. Cancer 21, 113-125
   Abstract »    Full Text »    PDF »
Pannexin 3 Inhibits Proliferation of Osteoprogenitor Cells by Regulating Wnt and p21 Signaling.
M. Ishikawa, T. Iwamoto, S. Fukumoto, and Y. Yamada (2014)
J. Biol. Chem. 289, 2839-2851
   Abstract »    Full Text »    PDF »
Prevention and treatment of colon cancer by peroral administration of HAMLET (human {alpha}-lactalbumin made lethal to tumour cells).
M. Puthia, P. Storm, A. Nadeem, S. Hsiung, and C. Svanborg (2014)
Gut 63, 131-142
   Abstract »    Full Text »    PDF »
The Rac-GAP Bcr is a novel regulator of the Par complex that controls cell polarity.
A. S. Narayanan, S. B. Reyes, K. Um, J. H. McCarty, and K. F. Tolias (2013)
Mol. Biol. Cell 24, 3857-3868
   Abstract »    Full Text »    PDF »
Crosstalk between Caveolin-1/Extracellular Signal-regulated Kinase (ERK) and {beta}-Catenin Survival Pathways in Osteocyte Mechanotransduction.
A. R. Gortazar, M. Martin-Millan, B. Bravo, L. I. Plotkin, and T. Bellido (2013)
J. Biol. Chem. 288, 8168-8175
   Abstract »    Full Text »    PDF »
Interactions and functions of the adenomatous polyposis coli (APC) protein at a glance.
S. Nelson and I. S. Nathke (2013)
J. Cell Sci. 126, 873-877
   Full Text »    PDF »
NO-{beta}-catenin crosstalk modulates primitive streak formation prior to embryonic stem cell osteogenic differentiation.
H. Ding, K. C. Keller, I. K. C. Martinez, R. M. Geransar, K. O. zur Nieden, S. G. Nishikawa, D. E. Rancourt, and N. I. zur Nieden (2012)
J. Cell Sci. 125, 5564-5577
   Abstract »    Full Text »    PDF »
Identification of a novel Wnt5a-CK1{varepsilon}-Dvl2-Plk1-mediated primary cilia disassembly pathway.
K. H. Lee, Y. Johmura, L.-R. Yu, J.-E. Park, Y. Gao, J. K. Bang, M. Zhou, T. D. Veenstra, B. Yeon Kim, and K. S. Lee (2012)
EMBO J. 31, 3104-3117
   Abstract »    Full Text »    PDF »
Function of Wnt/{beta}-catenin in counteracting Tcf3 repression through the Tcf3-{beta}-catenin interaction.
C.-I. Wu, J. A. Hoffman, B. R. Shy, E. M. Ford, E. Fuchs, H. Nguyen, and B. J. Merrill (2012)
Development 139, 2118-2129
   Abstract »    Full Text »    PDF »
DLC1 Interaction with {alpha}-Catenin Stabilizes Adherens Junctions and Enhances DLC1 Antioncogenic Activity.
V. Tripathi, N. C. Popescu, and D. B. Zimonjic (2012)
Mol. Cell. Biol. 32, 2145-2159
   Abstract »    Full Text »    PDF »
Wnt3a-stimulated LRP6 phosphorylation is dependent upon arginine methylation of G3BP2.
R. K. Bikkavilli and C. C. Malbon (2012)
J. Cell Sci. 125, 2446-2456
   Abstract »    Full Text »    PDF »
Silencing of parathyroid hormone (PTH) receptor 1 in T cells blunts the bone anabolic activity of PTH.
B. Bedi, J.-Y. Li, H. Tawfeek, K.-H. Baek, J. Adams, S. S. Vangara, M.-K. Chang, M. Kneissel, M. N. Weitzmann, and R. Pacifici (2012)
PNAS 109, E725-E733
   Abstract »    Full Text »    PDF »
Leptin-induced Epithelial-Mesenchymal Transition in Breast Cancer Cells Requires {beta}-Catenin Activation via Akt/GSK3- and MTA1/Wnt1 Protein-dependent Pathways.
D. Yan, D. Avtanski, N. K. Saxena, and D. Sharma (2012)
J. Biol. Chem. 287, 8598-8612
   Abstract »    Full Text »    PDF »
Wnt signaling meets internal dissent.
E. A. Grove (2011)
Genes & Dev. 25, 1759-1762
   Abstract »    Full Text »    PDF »
Arginine methylation of G3BP1 in response to Wnt3a regulates {beta}-catenin mRNA.
R. K. Bikkavilli and C. C. Malbon (2011)
J. Cell Sci. 124, 2310-2320
   Abstract »    Full Text »    PDF »
Genistein attenuates WNT signaling by up-regulating sFRP2 in a human colon cancer cell line.
Y. Zhang and H. Chen (2011)
Experimental Biology and Medicine 236, 714-722
   Abstract »    Full Text »    PDF »
Cadherin-11 regulates fibroblast inflammation.
S. K. Chang, E. H. Noss, M. Chen, Z. Gu, K. Townsend, R. Grenha, L. Leon, S. Y. Lee, D. M. Lee, and M. B. Brenner (2011)
PNAS 108, 8402-8407
   Abstract »    Full Text »    PDF »
{beta}-Catenin Is a Useful Adjunct Immunohistochemical Marker for the Diagnosis of Pulmonary Lymphangioleiomyomatosis.
R. J. Flavin, J. Cook, M. Fiorentino, D. Bailey, M. Brown, and M. F. Loda (2011)
Am J Clin Pathol 135, 776-782
   Abstract »    Full Text »    PDF »
Crystal Structure of the Human N-Myc Downstream-regulated Gene 2 Protein Provides Insight into Its Role as a Tumor Suppressor.
J. Hwang, Y. Kim, H. B. Kang, L. Jaroszewski, A. M. Deacon, H. Lee, W.-C. Choi, K.-J. Kim, C.-H. Kim, B. S. Kang, et al. (2011)
J. Biol. Chem. 286, 12450-12460
   Abstract »    Full Text »    PDF »
PIPKI{gamma} Regulates {beta}-Catenin Transcriptional Activity Downstream of Growth Factor Receptor Signaling.
M. Schramp, N. Thapa, J. Heck, and R. Anderson (2011)
Cancer Res. 71, 1282-1291
   Abstract »    Full Text »    PDF »
Combinatorial cell-specific regulation of GSK3 directs cell differentiation and polarity in Dictyostelium.
L. Kim, J. Brzostowski, A. Majithia, N.-S. Lee, V. McMains, and A. R. Kimmel (2011)
Development 138, 421-430
   Abstract »    Full Text »    PDF »
Requirement of TCF7L2 for TGF-{beta}-dependent Transcriptional Activation of the TMEPAI Gene.
N. Nakano, S. Itoh, Y. Watanabe, K. Maeyama, F. Itoh, and M. Kato (2010)
J. Biol. Chem. 285, 38023-38033
   Abstract »    Full Text »    PDF »
Effects of Regulator of G Protein Signaling 19 (RGS19) on Heart Development and Function.
Y. R. Ji, M. O. Kim, S. H. Kim, D. H. Yu, M. J. Shin, H. J. Kim, H. S. Yuh, K. B. Bae, J. Y. Kim, H. D. Park, et al. (2010)
J. Biol. Chem. 285, 28627-28634
   Abstract »    Full Text »    PDF »
The Pathogenic Role of the Canonical Wnt Pathway in Age-Related Macular Degeneration.
T. Zhou, Y. Hu, Y. Chen, K. K. Zhou, B. Zhang, G. Gao, and J.-x. Ma (2010)
Invest. Ophthalmol. Vis. Sci. 51, 4371-4379
   Abstract »    Full Text »    PDF »
Metastasis-Associated Protein 1 and Its Short Form Variant Stimulates Wnt1 Transcription through Promoting Its Derepression from Six3 Corepressor.
R. Kumar, S. Balasenthil, B. Manavathi, S. K. Rayala, and S. B. Pakala (2010)
Cancer Res. 70, 6649-6658
   Abstract »    Full Text »    PDF »
Wnt/frizzled signalling modulates the migration and differentiation of immortalized cardiac fibroblasts.
H. Laeremans, S. S. Rensen, H. C. J. Ottenheijm, J. F. M. Smits, and W. M. Blankesteijn (2010)
Cardiovasc Res 87, 514-523
   Abstract »    Full Text »    PDF »
Targeting Wnt Signaling: Can We Safely Eradicate Cancer Stem Cells?.
F. Takahashi-Yanaga and M. Kahn (2010)
Clin. Cancer Res. 16, 3153-3162
   Abstract »    Full Text »    PDF »
Tumor Necrosis Factor Receptor Superfamily Member 19 (TNFRSF19) Regulates Differentiation Fate of Human Mesenchymal (Stromal) Stem Cells through Canonical Wnt Signaling and C/EBP.
W. Qiu, Y. Hu, T. E. Andersen, A. Jafari, N. Li, W. Chen, and M. Kassem (2010)
J. Biol. Chem. 285, 14438-14449
   Abstract »    Full Text »    PDF »
Polycomb group genes Psc and Su(z)2 restrict follicle stem cell self-renewal and extrusion by controlling canonical and noncanonical Wnt signaling.
X. Li, Y. Han, and R. Xi (2010)
Genes & Dev. 24, 933-946
   Abstract »    Full Text »    PDF »
Aberrant expression of a {beta}-catenin gain-of-function mutant induces hyperplastic transformation in the mouse cornea.
Y. Zhang, M. K. Call, L.-K. Yeh, H. Liu, T. Kochel, I.-J. Wang, P.-H. Chu, M. M. Taketo, J. V. Jester, W. W.- Y. Kao, et al. (2010)
J. Cell Sci. 123, 1285-1294
   Abstract »    Full Text »    PDF »
Role of Wnt-5a in the Determination of Human Mesenchymal Stem Cells into Preadipocytes.
R. Bilkovski, D. M. Schulte, F. Oberhauser, M. Gomolka, M. Udelhoven, M. M. Hettich, B. Roth, A. Heidenreich, C. Gutschow, W. Krone, et al. (2010)
J. Biol. Chem. 285, 6170-6178
   Abstract »    Full Text »    PDF »
Downregulated MicroRNA-200a in Meningiomas Promotes Tumor Growth by Reducing E-Cadherin and Activating the Wnt/{beta}-Catenin Signaling Pathway.
O. Saydam, Y. Shen, T. Wurdinger, O. Senol, E. Boke, M. F. James, B. A. Tannous, A. O. Stemmer-Rachamimov, M. Yi, R. M. Stephens, et al. (2009)
Mol. Cell. Biol. 29, 5923-5940
   Abstract »    Full Text »    PDF »
Axin2 controls bone remodeling through the {beta}-catenin-BMP signaling pathway in adult mice.
Y. Yan, D. Tang, M. Chen, J. Huang, R. Xie, J. H. Jonason, X. Tan, W. Hou, D. Reynolds, W. Hsu, et al. (2009)
J. Cell Sci. 122, 3566-3578
   Abstract »    Full Text »    PDF »
The Links between Transcription, {beta}-catenin/JNK Signaling, and Carcinogenesis.
A. Saadeddin, R. Babaei-Jadidi, B. Spencer-Dene, and A. S. Nateri (2009)
Mol. Cancer Res. 7, 1189-1196
   Abstract »    Full Text »    PDF »
Wnt-5a/JNK Signaling Promotes the Clustering of PSD-95 in Hippocampal Neurons.
G. G. Farias, I. E. Alfaro, W. Cerpa, C. P. Grabowski, J. A. Godoy, C. Bonansco, and N. C. Inestrosa (2009)
J. Biol. Chem. 284, 15857-15866
   Abstract »    Full Text »    PDF »
Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone.
F. Kubo and S. Nakagawa (2009)
Development 136, 1823-1833
   Abstract »    Full Text »    PDF »
Cdc37 Regulates Ryk Signaling by Stabilizing the Cleaved Ryk Intracellular Domain.
J. Lyu, R. L. Wesselschmidt, and W. Lu (2009)
J. Biol. Chem. 284, 12940-12948
   Abstract »    Full Text »    PDF »
Xenopus Wntless and the Retromer Complex Cooperate To Regulate XWnt4 Secretion.
H. Kim, S.-M. Cheong, J. Ryu, H.-J. Jung, E.-h. Jho, and J.-K. Han (2009)
Mol. Cell. Biol. 29, 2118-2128
   Abstract »    Full Text »    PDF »
NDRG2 expression decreases with tumor stages and regulates TCF/{beta}-catenin signaling in human colon carcinoma.
Y.-J. Kim, S. Y. Yoon, J.-T. Kim, E. Y. Song, H. G. Lee, H. J. Son, S. Y. Kim, D. Cho, I. Choi, J. H. Kim, et al. (2009)
Carcinogenesis 30, 598-605
   Abstract »    Full Text »    PDF »
Wnt5a Is Required for Endothelial Differentiation of Embryonic Stem Cells and Vascularization via Pathways Involving Both Wnt/{beta}-Catenin and Protein Kinase C{alpha}.
D.-H. Yang, J.-Y. Yoon, S.-H. Lee, V. Bryja, E. R. Andersson, E. Arenas, Y.-G. Kwon, and K.-Y. Choi (2009)
Circ. Res. 104, 372-379
   Abstract »    Full Text »    PDF »
Helicobacter pylori VacA-induced Inhibition of GSK3 through the PI3K/Akt Signaling Pathway.
M. Nakayama, J. Hisatsune, E. Yamasaki, H. Isomoto, H. Kurazono, M. Hatakeyama, T. Azuma, Y. Yamaoka, K. Yahiro, J. Moss, et al. (2009)
J. Biol. Chem. 284, 1612-1619
   Abstract »    Full Text »    PDF »
A reduced oxygen tension (5%) is not beneficial for maintaining human embryonic stem cells in the undifferentiated state with short splitting intervals.
H.-F. Chen, H.-C. Kuo, W. Chen, F.-C. Wu, Y.-S. Yang, and H.-N. Ho (2009)
Hum. Reprod. 24, 71-80
   Abstract »    Full Text »    PDF »
p38 mitogen-activated protein kinase regulates canonical Wnt-{beta}-catenin signaling by inactivation of GSK3{beta}.
R. K. Bikkavilli, M. E. Feigin, and C. C. Malbon (2008)
J. Cell Sci. 121, 3598-3607
   Abstract »    Full Text »    PDF »
Parathyroid hormone signaling through low-density lipoprotein-related protein 6.
M. Wan, C. Yang, J. Li, X. Wu, H. Yuan, H. Ma, X. He, S. Nie, C. Chang, and X. Cao (2008)
Genes & Dev. 22, 2968-2979
   Abstract »    Full Text »    PDF »
A Novel Functional Screen in Human Cells Identifies MOCA as a Negative Regulator of Wnt Signaling.
E. Caspi and R. Rosin-Arbesfeld (2008)
Mol. Biol. Cell 19, 4660-4674
   Abstract »    Full Text »    PDF »
Chondroitin 4-O-Sulfotransferase-1 Modulates Wnt-3a Signaling through Control of E Disaccharide Expression of Chondroitin Sulfate.
S. Nadanaka, M. Ishida, M. Ikegami, and H. Kitagawa (2008)
J. Biol. Chem. 283, 27333-27343
   Abstract »    Full Text »    PDF »
Silencing Mediator for Retinoid and Thyroid Hormone Receptor and Nuclear Receptor Corepressor Attenuate Transcriptional Activation by the {beta}-Catenin-TCF4 Complex.
L.-N. Song and E. P. Gelmann (2008)
J. Biol. Chem. 283, 25988-25999
   Abstract »    Full Text »    PDF »
Illegitimate WNT Pathway Activation by {beta}-Catenin Mutation or Autocrine Stimulation in T-Cell Malignancies.
R. W.J. Groen, M. E.C.M. Oud, E. J.M. Schilder-Tol, M. B. Overdijk, D. ten Berge, R. Nusse, M. Spaargaren, and S. T. Pals (2008)
Cancer Res. 68, 6969-6977
   Abstract »    Full Text »    PDF »
LEF-1 Negatively Controls Interleukin-4 Expression through a Proximal Promoter Regulatory Element.
D. Hebenstreit, M. Giaisi, M. K. Treiber, X.-B. Zhang, H.-F. Mi, J. Horejs-Hoeck, K. G. Andersen, P. H. Krammer, A. Duschl, and M. Li-Weber (2008)
J. Biol. Chem. 283, 22490-22497
   Abstract »    Full Text »    PDF »
Fibroblast Growth Factor Signaling Uses Multiple Mechanisms To Inhibit Wnt-Induced Transcription in Osteoblasts.
D. Ambrosetti, G. Holmes, A. Mansukhani, and C. Basilico (2008)
Mol. Cell. Biol. 28, 4759-4771
   Abstract »    Full Text »    PDF »
Wnt/{beta}-Catenin Signaling Suppresses Rapsyn Expression and Inhibits Acetylcholine Receptor Clustering at the Neuromuscular Junction.
J. Wang, N.-J. Ruan, L. Qian, W.-l. Lei, F. Chen, and Z.-G. Luo (2008)
J. Biol. Chem. 283, 21668-21675
   Abstract »    Full Text »    PDF »
Regulation of {beta}-Catenin by a Novel Nongenomic Action of Thyroid Hormone {beta} Receptor.
C. J. Guigon, L. Zhao, C. Lu, M. C. Willingham, and S.-y. Cheng (2008)
Mol. Cell. Biol. 28, 4598-4608
   Abstract »    Full Text »    PDF »
Genome-wide association scans identified CTNNBL1 as a novel gene for obesity.
Y.-J. Liu, X.-G. Liu, L. Wang, C. Dina, H. Yan, J.-F. Liu, S. Levy, C. J. Papasian, B. M. Drees, J. J. Hamilton, et al. (2008)
Hum. Mol. Genet. 17, 1803-1813
   Abstract »    Full Text »    PDF »
Wnt-7a Modulates the Synaptic Vesicle Cycle and Synaptic Transmission in Hippocampal Neurons.
W. Cerpa, J. A. Godoy, I. Alfaro, G. G. Farias, M. J. Metcalfe, R. Fuentealba, C. Bonansco, and N. C. Inestrosa (2008)
J. Biol. Chem. 283, 5918-5927
   Abstract »    Full Text »    PDF »
{beta}-Catenin is a Nek2 substrate involved in centrosome separation.
S. Bahmanyar, D. D. Kaplan, J. G. DeLuca, T. H. Giddings Jr., E. T. O'Toole, M. Winey, E. D. Salmon, P. J. Casey, W. J. Nelson, and A. I.M. Barth (2008)
Genes & Dev. 22, 91-105
   Abstract »    Full Text »    PDF »
Loss of cathepsin L activity promotes claudin-1 overexpression and intestinal neoplasia.
F. Boudreau, C. R. Lussier, S. Mongrain, M. Darsigny, J. L. Drouin, G. Doyon, E. R. Suh, J.-F. Beaulieu, N. Rivard, and N. Perreault (2007)
FASEB J 21, 3853-3865
   Abstract »    Full Text »    PDF »
Mechanistic insights from structural studies of beta-catenin and its binding partners.
W. Xu and D. Kimelman (2007)
J. Cell Sci. 120, 3337-3344
   Abstract »    Full Text »    PDF »
Oxidative Stress Antagonizes Wnt Signaling in Osteoblast Precursors by Diverting beta-Catenin from T Cell Factor- to Forkhead Box O-mediated Transcription.
M. Almeida, L. Han, M. Martin-Millan, C. A. O'Brien, and S. C. Manolagas (2007)
J. Biol. Chem. 282, 27298-27305
   Abstract »    Full Text »    PDF »
Wnt/beta-Catenin Signaling Is a Component of Osteoblastic Bone Cell Early Responses to Load-bearing and Requires Estrogen Receptor {alpha}.
V. J. Armstrong, M. Muzylak, A. Sunters, G. Zaman, L. K. Saxon, J. S. Price, and L. E. Lanyon (2007)
J. Biol. Chem. 282, 20715-20727
   Abstract »    Full Text »    PDF »
Wnt Induces LRP6 Signalosomes and Promotes Dishevelled-Dependent LRP6 Phosphorylation.
J. Bilic, Y.-L. Huang, G. Davidson, T. Zimmermann, C.-M. Cruciat, M. Bienz, and C. Niehrs (2007)
Science 316, 1619-1622
   Abstract »    Full Text »    PDF »
Chibby Promotes Adipocyte Differentiation through Inhibition of {beta}-Catenin Signaling.
F.-Q. Li, A. M. Singh, A. Mofunanya, D. Love, N. Terada, R. T. Moon, and K.-I. Takemaru (2007)
Mol. Cell. Biol. 27, 4347-4354
   Abstract »    Full Text »    PDF »
Wnt signaling is a key mediator of Cdx1 expression in vivo.
N. Pilon, K. Oh, J.-R. Sylvestre, J. G. A. Savory, and D. Lohnes (2007)
Development 134, 2315-2323
   Abstract »    Full Text »    PDF »
Wnt-7a Induces Presynaptic Colocalization of {alpha}7-Nicotinic Acetylcholine Receptors and Adenomatous Polyposis Coli in Hippocampal Neurons.
G. G. Farias, A. S. Valles, M. Colombres, J. A. Godoy, E. M. Toledo, R. J. Lukas, F. J. Barrantes, and N. C. Inestrosa (2007)
J. Neurosci. 27, 5313-5325
   Abstract »    Full Text »    PDF »
XTsh3 is an essential enhancing factor of canonical Wnt signaling in Xenopus axial determination.
T. Onai, M. Matsuo-Takasaki, H. Inomata, T. Aramaki, M. Matsumura, R. Yakura, N. Sasai, and Y. Sasai (2007)
EMBO J. 26, 2350-2360
   Abstract »    Full Text »    PDF »
Secreted frizzled related protein 2 (Sfrp2) is the key Akt-mesenchymal stem cell-released paracrine factor mediating myocardial survival and repair.
M. Mirotsou, Z. Zhang, A. Deb, L. Zhang, M. Gnecchi, N. Noiseux, H. Mu, A. Pachori, and V. Dzau (2007)
PNAS 104, 1643-1648
   Abstract »    Full Text »    PDF »
Role for WNT16B in human epidermal keratinocyte proliferation and differentiation.
M.-T. Teh, D. Blaydon, L. R. Ghali, S. Edmunds, E. Pantazi, M. R. Barnes, I. M. Leigh, D. P. Kelsell, and M. P. Philpott (2007)
J. Cell Sci. 120, 330-339
   Abstract »    Full Text »    PDF »
Patterning the zebrafish diencephalon by the conserved zinc-finger protein Fezl.
J.-Y. Jeong, Z. Einhorn, P. Mathur, L. Chen, S. Lee, K. Kawakami, and S. Guo (2007)
Development 134, 127-136
   Abstract »    Full Text »    PDF »
The making of Wnt: new insights into Wnt maturation, sorting and secretion.
D. Coudreuse and H. C. Korswagen (2007)
Development 134, 3-12
   Full Text »    PDF »
Metastatic tumor antigen 3 is a direct corepressor of the Wnt4 pathway.
H. Zhang, R. R. Singh, A. H. Talukder, and R. Kumar (2006)
Genes & Dev. 20, 2943-2948
   Abstract »    Full Text »    PDF »
Wnt/beta-Catenin Signaling Is a Normal Physiological Response to Mechanical Loading in Bone.
J. A. Robinson, M. Chatterjee-Kishore, P. J. Yaworsky, D. M. Cullen, W. Zhao, C. Li, Y. Kharode, L. Sauter, P. Babij, E. L. Brown, et al. (2006)
J. Biol. Chem. 281, 31720-31728
   Abstract »    Full Text »    PDF »
Protein-tyrosine Phosphatase PCP-2 Inhibits beta-Catenin Signaling and Increases E-cadherin-dependent Cell Adhesion.
H.-X. Yan, W. Yang, R. Zhang, L. Chen, L. Tang, B. Zhai, S.-Q. Liu, H.-F. Cao, X.-B. Man, H.-P. Wu, et al. (2006)
J. Biol. Chem. 281, 15423-15433
   Abstract »    Full Text »    PDF »
Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: effects on molecular targets..
C. V. Rao, B. S. Reddy, V. E. Steele, C-X Wang, X. Liu, N. Ouyang, J. M.R. Patlolla, B. Simi, L. Kopelovich, and B. Rigas (2006)
Mol. Cancer Ther. 5, 1530-1538
   Abstract »    Full Text »    PDF »
TC1(C8orf4) Correlates with Wnt/{beta}-Catenin Target Genes and Aggressive Biological Behavior in Gastric Cancer..
B. Kim, H. Koo, S. Yang, S. Bang, Y. Jung, Y. Kim, J. Kim, J. Park, R. T. Moon, K. Song, et al. (2006)
Clin. Cancer Res. 12, 3541-3548
   Abstract »    Full Text »    PDF »
Nuclear trafficking of Drosophila Frizzled-2 during synapse development requires the PDZ protein dGRIP.
B. Ataman, J. Ashley, D. Gorczyca, M. Gorczyca, D. Mathew, C. Wichmann, S. J. Sigrist, and V. Budnik (2006)
PNAS 103, 7841-7846
   Abstract »    Full Text »    PDF »
Mouse Cristin/R-spondin Family Proteins Are Novel Ligands for the Frizzled 8 and LRP6 Receptors and Activate beta-Catenin-dependent Gene Expression.
J.-S. Nam, T. J. Turcotte, P. F. Smith, S. Choi, and J. K. Yoon (2006)
J. Biol. Chem. 281, 13247-13257
   Abstract »    Full Text »    PDF »
Negative Regulation of LRP6 Function by Casein Kinase I {epsilon} Phosphorylation.
W. Swiatek, H. Kang, B. A. Garcia, J. Shabanowitz, G. S. Coombs, D. F. Hunt, and D. M. Virshup (2006)
J. Biol. Chem. 281, 12233-12241
   Abstract »    Full Text »    PDF »
Wnt3a gradient converts radial to bilateral feather symmetry via topological arrangement of epithelia.
Z. Yue, T.-X. Jiang, R. B. Widelitz, and C.-M. Chuong (2006)
PNAS 103, 951-955
   Abstract »    Full Text »    PDF »
TC1 (C8orf4) Enhances the Wnt/{beta}-Catenin Pathway by Relieving Antagonistic Activity of Chibby.
Y. Jung, S. Bang, K. Choi, E. Kim, Y. Kim, J. Kim, J. Park, H. Koo, R. T. Moon, K. Song, et al. (2006)
Cancer Res. 66, 723-728
   Abstract »    Full Text »    PDF »
Wnt Proteins Prevent Apoptosis of Both Uncommitted Osteoblast Progenitors and Differentiated Osteoblasts by {beta}-Catenin-dependent and -independent Signaling Cascades Involving Src/ERK and Phosphatidylinositol 3-Kinase/AKT.
M. Almeida, L. Han, T. Bellido, S. C. Manolagas, and S. Kousteni (2005)
J. Biol. Chem. 280, 41342-41351
   Abstract »    Full Text »    PDF »
Adenovirus-Mediated Overexpression of REIC/Dkk-3 Selectively Induces Apoptosis in Human Prostate Cancer Cells through Activation of c-Jun-NH2-Kinase.
F. Abarzua, M. Sakaguchi, M. Takaishi, Y. Nasu, K. Kurose, S. Ebara, M. Miyazaki, M. Namba, H. Kumon, and N.-h. Huh (2005)
Cancer Res. 65, 9617-9622
   Abstract »    Full Text »    PDF »
Bcr is a negative regulator of the Wnt signalling pathway.
A. Ress and K. Moelling (2005)
EMBO Rep. 6, 1095-1100
   Abstract »    Full Text »    PDF »
Lithium rescues toxicity of aggregate-prone proteins in Drosophila by perturbing Wnt pathway.
Z. Berger, E. K. Ttofi, C. H. Michel, M. Y. Pasco, S. Tenant, D. C. Rubinsztein, and C. J. O'Kane (2005)
Hum. Mol. Genet. 14, 3003-3011
   Abstract »    Full Text »    PDF »
Wnt/{beta}-catenin signaling activates growth-control genes during overload-induced skeletal muscle hypertrophy.
D. D. Armstrong and K. A. Esser (2005)
Am J Physiol Cell Physiol 289, C853-C859
   Abstract »    Full Text »    PDF »
On mammary stem cells.
W. A. Woodward, M. S. Chen, F. Behbod, and J. M. Rosen (2005)
J. Cell Sci. 118, 3585-3594
   Abstract »    Full Text »    PDF »
Wnt signalling mediated by Tbx2b regulates cell migration during formation of the neural plate.
S. H. Fong, A. Emelyanov, C. Teh, and V. Korzh (2005)
Development 132, 3587-3596
   Abstract »    Full Text »    PDF »
Stomatal Patterning and Differentiation by Synergistic Interactions of Receptor Kinases.
E. D. Shpak, J. M. McAbee, L. J. Pillitteri, and K. U. Torii (2005)
Science 309, 290-293
   Abstract »    Full Text »    PDF »
Regulating Inducible Transcription Through Controlled Localization.
E. C. Ziegler and S. Ghosh (2005)
Sci. STKE 2005, re6
   Abstract »    Full Text »    PDF »
Functional Genomic Analysis of the Wnt-Wingless Signaling Pathway.
R. DasGupta, A. Kaykas, R. T. Moon, and N. Perrimon (2005)
Science 308, 826-833
   Abstract »    Full Text »    PDF »
Cell adhesion and signal transduction in cancer: Conference on Cadherins, Catenins and Cancer.
W. Birchmeier (2005)
EMBO Rep. 6, 413-417
   Full Text »    PDF »
The Mechanism of Endogenous Receptor Activation Functionally Distinguishes Prototype Canonical and Noncanonical Wnts.
G. Liu, A. Bafico, and S. A. Aaronson (2005)
Mol. Cell. Biol. 25, 3475-3482
   Abstract »    Full Text »    PDF »
Expression of secreted Wnt antagonists in gastrointestinal tissues: potential role in stem cell homeostasis.
T Byun, M Karimi, J L Marsh, T Milovanovic, F Lin, and R F Holcombe (2005)
J. Clin. Pathol. 58, 515-519
   Abstract »    Full Text »    PDF »
Casein Kinase 2- and Protein Kinase A-regulated Adenomatous Polyposis Coli and {beta}-Catenin Cellular Localization Is Dependent on p38 MAPK.
J. Hildesheim, J. M. Salvador, M. C. Hollander, and A. J. Fornace Jr. (2005)
J. Biol. Chem. 280, 17221-17226
   Abstract »    Full Text »    PDF »
G protein-coupled lysophosphatidic acid receptors stimulate proliferation of colon cancer cells through the {beta}-catenin pathway.
M. Yang, W. W. Zhong, N. Srivastava, A. Slavin, J. Yang, T. Hoey, and S. An (2005)
PNAS 102, 6027-6032
   Abstract »    Full Text »    PDF »
Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis.
E. J. McManus, K. Sakamoto, L. J. Armit, L. Ronaldson, N. Shpiro, R. Marquez, and D. R. Alessi (2005)
EMBO J. 24, 1571-1583
   Abstract »    Full Text »    PDF »
The role of Axin2 in calvarial morphogenesis and craniosynostosis.
H.-M. I. Yu, B. Jerchow, T.-J. Sheu, B. Liu, F. Costantini, J. E. Puzas, W. Birchmeier, and W. Hsu (2005)
Development 132, 1995-2005
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882