Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 296 (5575): 2026-2028

Copyright © 2002 by the American Association for the Advancement of Science

RopGAP4-Dependent Rop GTPase Rheostat Control of Arabidopsis Oxygen Deprivation Tolerance

Airica Baxter-Burrell, Zhenbiao Yang, Patricia S. Springer, Julia Bailey-Serres*

Transient soil flooding limits cellular oxygen to roots and reduces crop yield. Plant response to oxygen deprivation involves increased expression of the alcohol dehydrogenase gene (ADH) and ethanolic fermentation. Disruption of the Arabidopsis gene that encodes Rop (RHO-like small G protein of plants) guanosine triphosphatase (GTPase) activating protein 4 (ROPGAP4), a Rop deactivator, elevates ADH expression in response to oxygen deprivation but decreases tolerance to stress. Rop-dependent production of hydrogen peroxide via a diphenylene iodonium chloride-sensitive calcium-dependent reduced nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is necessary for induction of both ADH and RopGAP4 expression. Tolerance to oxygen deprivation requires Rop activation and RopGAP4-dependent negative feedback regulation. This Rop signal transduction rheostat balances the ability to increase ethanolic fermentation with survival.

Center for Plant Cell Biology, Department of Botany and Plant Sciences, University of California, Riverside, CA 92521, USA.
*   To whom correspondence should be addressed. E-mail: serres{at}mail.ucr.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Ethylene and reactive oxygen species are involved in root aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions.
T. Yamauchi, K. Watanabe, A. Fukazawa, H. Mori, F. Abe, K. Kawaguchi, A. Oyanagi, and M. Nakazono (2014)
J. Exp. Bot. 65, 261-273
   Abstract »    Full Text »    PDF »
CPK3-phosphorylated RhoGDI1 is essential in the development of Arabidopsis seedlings and leaf epidermal cells.
Y. Wu, S. Zhao, H. Tian, Y. He, W. Xiong, L. Guo, and Y. Wu (2013)
J. Exp. Bot. 64, 3327-3338
   Abstract »    Full Text »    PDF »
Hypoxia induces H2O2 production and activates antioxidant defence system in grapevine buds through mediation of H2O2 and ethylene.
R. Vergara, F. Parada, S. Rubio, and F. J. Perez (2012)
J. Exp. Bot. 63, 4123-4131
   Abstract »    Full Text »    PDF »
Reactive Oxygen Species-Driven Transcription in Arabidopsis under Oxygen Deprivation.
C. Pucciariello, S. Parlanti, V. Banti, G. Novi, and P. Perata (2012)
Plant Physiology 159, 184-196
   Abstract »    Full Text »    PDF »
Role of waterlogging-responsive genes in shaping interspecific differentiation between two sympatric oak species.
G. Le Provost, C. Sulmon, J. M. Frigerio, C. Bodenes, A. Kremer, and C. Plomion (2012)
Tree Physiol 32, 119-134
   Abstract »    Full Text »    PDF »
Plant Oxygen Sensing Is Mediated by the N-End Rule Pathway: A Milestone in Plant Anaerobiosis.
R. Sasidharan and A. Mustroph (2011)
PLANT CELL 23, 4173-4183
   Abstract »    Full Text »    PDF »
Differential Molecular Responses of Rice and Wheat Coleoptiles to Anoxia Reveal Novel Metabolic Adaptations in Amino Acid Metabolism for Tissue Tolerance.
R. N. Shingaki-Wells, S. Huang, N. L. Taylor, A. J. Carroll, W. Zhou, and A. H. Millar (2011)
Plant Physiology 156, 1706-1724
   Abstract »    Full Text »    PDF »
Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance.
S. Parlanti, N. P. Kudahettige, L. Lombardi, A. Mensuali-Sodi, A. Alpi, P. Perata, and C. Pucciariello (2011)
Ann. Bot. 107, 1335-1343
   Abstract »    Full Text »    PDF »
Alcohol dehydrogenase 1 of barley modulates susceptibility to the parasitic fungus Blumeria graminis f.sp. hordei.
I. P. Pathuri, I. E. Reitberger, R. Huckelhoven, and R. K. Proels (2011)
J. Exp. Bot. 62, 3449-3457
   Abstract »    Full Text »    PDF »
A Barley ROP GTPase ACTIVATING PROTEIN Associates with Microtubules and Regulates Entry of the Barley Powdery Mildew Fungus into Leaf Epidermal Cells.
C. Hoefle, C. Huesmann, H. Schultheiss, F. Bornke, G. Hensel, J. Kumlehn, and R. Huckelhoven (2011)
PLANT CELL 23, 2422-2439
   Abstract »    Full Text »    PDF »
The AP2/ERF Transcription Factor AtERF73/HRE1 Modulates Ethylene Responses during Hypoxia in Arabidopsis.
C.-Y. Yang, F.-C. Hsu, J.-P. Li, N.-N. Wang, and M.-C. Shih (2011)
Plant Physiology 156, 202-212
   Abstract »    Full Text »    PDF »
Rop GTPase and Its Target Cdc42/Rac-Interactive-Binding Motif-Containing Protein Genes Respond to Desiccation during Pollen Maturation.
S.-W. Hsu, C.-L. Cheng, T.-C. J. Tzen, and C.-S. Wang (2010)
Plant Cell Physiol. 51, 1197-1209
   Abstract »    Full Text »    PDF »
Identification and differential expression dynamics of peach small GTPases encoding genes during fruit development and ripening.
R. Falchi, G. Cipriani, T. Marrazzo, A. Nonis, G. Vizzotto, and B. Ruperti (2010)
J. Exp. Bot. 61, 2829-2842
   Abstract »    Full Text »    PDF »
Cross-Kingdom Comparison of Transcriptomic Adjustments to Low-Oxygen Stress Highlights Conserved and Plant-Specific Responses.
A. Mustroph, S. C. Lee, T. Oosumi, M. E. Zanetti, H. Yang, K. Ma, A. Yaghoubi-Masihi, T. Fukao, and J. Bailey-Serres (2010)
Plant Physiology 152, 1484-1500
   Abstract »    Full Text »    PDF »
Hypoxia-responsive microRNAs and trans-acting small interfering RNAs in Arabidopsis.
D. Moldovan, A. Spriggs, J. Yang, B. J. Pogson, E. S. Dennis, and I. W. Wilson (2010)
J. Exp. Bot. 61, 165-177
   Abstract »    Full Text »    PDF »
The Low-Oxygen-Induced NAC Domain Transcription Factor ANAC102 Affects Viability of Arabidopsis Seeds following Low-Oxygen Treatment.
J. A. Christianson, I. W. Wilson, D. J. Llewellyn, and E. S. Dennis (2009)
Plant Physiology 149, 1724-1738
   Abstract »    Full Text »    PDF »
RIP1 (ROP Interactive Partner 1)/ICR1 Marks Pollen Germination Sites and May Act in the ROP1 Pathway in the Control of Polarized Pollen Growth.
S. Li, Y. Gu, A. Yan, E. Lord, and Z.-B. Yang (2008)
Mol Plant 1, 1021-1035
   Abstract »    Full Text »    PDF »
Comparative Proteomics Analysis Reveals an Intimate Protein Network Provoked by Hydrogen Peroxide Stress in Rice Seedling Leaves.
X.-Y. Wan and J.-Y. Liu (2008)
Mol. Cell. Proteomics 7, 1469-1488
   Abstract »    Full Text »    PDF »
Regulation of Membrane Trafficking, Cytoskeleton Dynamics, and Cell Polarity by ROP/RAC GTPases.
S. Yalovsky, D. Bloch, N. Sorek, and B. Kost (2008)
Plant Physiology 147, 1527-1543
   Full Text »    PDF »
The Arabidopsis Small G Protein ROP2 Is Activated by Light in Guard Cells and Inhibits Light-Induced Stomatal Opening.
B. W. Jeon, J.-U. Hwang, Y. Hwang, W.-Y. Song, Y. Fu, Y. Gu, F. Bao, D. Cho, J. M. Kwak, Z. Yang, et al. (2008)
PLANT CELL 20, 75-87
   Abstract »    Full Text »    PDF »
Regulation of Rice NADPH Oxidase by Binding of Rac GTPase to Its N-Terminal Extension.
H. L. Wong, R. Pinontoan, K. Hayashi, R. Tabata, T. Yaeno, K. Hasegawa, C. Kojima, H. Yoshioka, K. Iba, T. Kawasaki, et al. (2007)
PLANT CELL 19, 4022-4034
   Abstract »    Full Text »    PDF »
A distinct mechanism regulating a pollen-specific guanine nucleotide exchange factor for the small GTPase Rop in Arabidopsis thaliana.
Y. Zhang and S. McCormick (2007)
PNAS 104, 18830-18835
   Abstract »    Full Text »    PDF »
Lysigenous Aerenchyma Formation in Arabidopsis Is Controlled by LESION SIMULATING DISEASE1.
P. Muhlenbock, M. Plaszczyca, M. Plaszczyca, E. Mellerowicz, and S. Karpinski (2007)
PLANT CELL 19, 3819-3830
   Abstract »    Full Text »    PDF »
Calcium function and distribution during fertilization in angiosperms.
L. L. Ge, H. Q. Tian, and S. D. Russell (2007)
Am. J. Botany 94, 1046-1060
   Abstract »    Full Text »    PDF »
Identification and expression profiling of low oxygen regulated genes from Citrus flavedo tissues using RT-PCR differential display.
K. Pasentsis, V. Falara, I. Pateraki, D. Gerasopoulos, and A. K. Kanellis (2007)
J. Exp. Bot. 58, 2203-2216
   Abstract »    Full Text »    PDF »
Transcript Profiling of the Anoxic Rice Coleoptile.
R. Lasanthi-Kudahettige, L. Magneschi, E. Loreti, S. Gonzali, F. Licausi, G. Novi, O. Beretta, F. Vitulli, A. Alpi, and P. Perata (2007)
Plant Physiology 144, 218-231
   Abstract »    Full Text »    PDF »
NADPH oxidase-dependent reactive oxygen species formation required for root hair growth depends on ROP GTPase.
M. A. Jones, M. J. Raymond, Z. Yang, and N. Smirnoff (2007)
J. Exp. Bot. 58, 1261-1270
   Abstract »    Full Text »    PDF »
Tobacco RhoGTPase ACTIVATING PROTEIN1 Spatially Restricts Signaling of RAC/Rop to the Apex of Pollen Tubes.
U. Klahre and B. Kost (2006)
PLANT CELL 18, 3033-3046
   Abstract »    Full Text »    PDF »
Production of Reactive Oxygen Species by Plant NADPH Oxidases.
M. Sagi and R. Fluhr (2006)
Plant Physiology 141, 336-340
   Full Text »    PDF »
Mitogen-Activated Protein Kinases and Reactive Oxygen Species Signaling in Plants.
A. Pitzschke and H. Hirt (2006)
Plant Physiology 141, 351-356
   Full Text »    PDF »
Mitochondrial Reactive Oxygen Species. Contribution to Oxidative Stress and Interorganellar Signaling.
D. M. Rhoads, A. L. Umbach, C. C. Subbaiah, and J. N. Siedow (2006)
Plant Physiology 141, 357-366
   Full Text »    PDF »
The role of reactive oxygen species in cell growth: lessons from root hairs.
R. J Carol and L. Dolan (2006)
J. Exp. Bot. 57, 1829-1834
   Abstract »    Full Text »    PDF »
Members of a Novel Class of Arabidopsis Rho Guanine Nucleotide Exchange Factors Control Rho GTPase-Dependent Polar Growth.
Y. Gu, S. Li, E. M. Lord, and Z. Yang (2006)
PLANT CELL 18, 366-381
   Abstract »    Full Text »    PDF »
Proteomics of Rac GTPase Signaling Reveals Its Predominant Role in Elicitor-Induced Defense Response of Cultured Rice Cells.
M. Fujiwara, K. Umemura, T. Kawasaki, and K. Shimamoto (2006)
Plant Physiology 140, 734-745
   Abstract »    Full Text »    PDF »
Transcriptome Analysis Reveals Specific Modulation of Abscisic Acid Signaling by ROP10 Small GTPase in Arabidopsis.
Z. Xin, Y. Zhao, and Z.-L. Zheng (2005)
Plant Physiology 139, 1350-1365
   Abstract »    Full Text »    PDF »
Sensing and Signalling in Response to Oxygen Deprivation in Plants and Other Organisms.
J. BAILEY-SERRES and R. CHANG (2005)
Ann. Bot. 96, 507-518
   Abstract »    Full Text »    PDF »
Genome-wide Analysis of Transcript Abundance and Translation in Arabidopsis Seedlings Subjected to Oxygen Deprivation.
C. BRANCO-PRICE, R. KAWAGUCHI, R. B. FERREIRA, and J. BAILEY-SERRES (2005)
Ann. Bot. 96, 647-660
   Abstract »    Full Text »    PDF »
The small GTPase AtRAC2/ROP7 is specifically expressed during late stages of xylem differentiation in Arabidopsis.
T. Brembu, P. Winge, and A. M. Bones (2005)
J. Exp. Bot. 56, 2465-2476
   Abstract »    Full Text »    PDF »
AtGLB1 Enhances the Tolerance of Arabidopsis to Hydrogen Peroxide Stress.
L.-X. Yang, R.-Y. Wang, F. Ren, J. Liu, J. Cheng, and Y.-T. Lu (2005)
Plant Cell Physiol. 46, 1309-1316
   Abstract »    Full Text »    PDF »
Different Signaling and Cell Death Roles of Heterotrimeric G Protein {alpha} and {beta} Subunits in the Arabidopsis Oxidative Stress Response to Ozone.
J. H. Joo, S. Wang, J.G. Chen, A.M. Jones, and N. V. Fedoroff (2005)
PLANT CELL 17, 957-970
   Abstract »    Full Text »    PDF »
Global Transcription Profiling Reveals Comprehensive Insights into Hypoxic Response in Arabidopsis.
F. Liu, T. VanToai, L. P. Moy, G. Bock, L. D. Linford, and J. Quackenbush (2005)
Plant Physiology 137, 1115-1129
   Abstract »    Full Text »    PDF »
Nitrate reductase regulation in tomato roots by exogenous nitrate: a possible role in tolerance to long-term root anoxia.
A. Allegre, J. Silvestre, P. Morard, J. Kallerhoff, and E. Pinelli (2004)
J. Exp. Bot. 55, 2625-2634
   Abstract »    Full Text »    PDF »
Extracellular Calmodulin-Induced Stomatal Closure Is Mediated by Heterotrimeric G Protein and H2O2.
Y.-L. Chen, R. Huang, Y.-M. Xiao, P. Lu, J. Chen, and X.-C. Wang (2004)
Plant Physiology 136, 4096-4103
   Abstract »    Full Text »    PDF »
Down-Regulation of Metallothionein, a Reactive Oxygen Scavenger, by the Small GTPase OsRac1 in Rice.
H. L. Wong, T. Sakamoto, T. Kawasaki, K. Umemura, and K. Shimamoto (2004)
Plant Physiology 135, 1447-1456
   Abstract »    Full Text »    PDF »
Phosphatidic Acid Induces Leaf Cell Death in Arabidopsis by Activating the Rho-Related Small G Protein GTPase-Mediated Pathway of Reactive Oxygen Species Generation.
J. Park, Y. Gu, Y. Lee, Z. Yang, and Y. Lee (2004)
Plant Physiology 134, 129-136
   Abstract »    Full Text »    PDF »
Conserved Subgroups and Developmental Regulation in the Monocot rop Gene Family.
T. M. Christensen, Z. Vejlupkova, Y. K. Sharma, K. M. Arthur, J. W. Spatafora, C. A. Albright, R. B. Meeley, J. P. Duvick, R. S. Quatrano, and J. E. Fowler (2003)
Plant Physiology 133, 1791-1808
   Abstract »    Full Text »
Analysis of the Small GTPase Gene Superfamily of Arabidopsis.
V. Vernoud, A. C. Horton, Z. Yang, and E. Nielsen (2003)
Plant Physiology 131, 1191-1208
   Abstract »    Full Text »    PDF »
Regulation of pollen tube growth by Rac-like GTPases.
A. Y. Cheung, C. Y-h. Chen, L.-z. Tao, T. Andreyeva, D. Twell, and H.-m. Wu (2003)
J. Exp. Bot. 54, 73-81
   Abstract »    Full Text »    PDF »
Plant Rac-Like GTPases Are Activated by Auxin and Mediate Auxin-Responsive Gene Expression.
L.-z. Tao, A. Y. Cheung, and H.-m. Wu (2002)
PLANT CELL 14, 2745-2760
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882