Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 296 (5576): 2238-2243

Copyright © 2002 by the American Association for the Advancement of Science

Sp1 and TAFII130 Transcriptional Activity Disrupted in Early Huntington's Disease

Anthone W. Dunah,1 Hyunkyung Jeong,1 April Griffin,1 Yong-Man Kim,2 David G. Standaert,1 Steven M. Hersch,1 M. Maral Mouradian,2 Anne B. Young,1 Naoko Tanese,3 Dimitri Krainc1*

Huntington's disease (HD) is an inherited neurodegenerative disease caused by expansion of a polyglutamine tract in the huntingtin protein. Transcriptional dysregulation has been implicated in HD pathogenesis. Here, we report that huntingtin interacts with the transcriptional activator Sp1 and coactivator TAFII130. Coexpression of Sp1 and TAFII130 in cultured striatal cells from wild-type and HD transgenic mice reverses the transcriptional inhibition of the dopamine D2 receptor gene caused by mutant huntingtin, as well as protects neurons from huntingtin-induced cellular toxicity. Furthermore, soluble mutant huntingtin inhibits Sp1 binding to DNA in postmortem brain tissues of both presymptomatic and affected HD patients. Understanding these early molecular events in HD may provide an opportunity to interfere with the effects of mutant huntingtin before the development of disease symptoms.

1 Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Center for Aging, Genetics and Neurodegeneration, Charlestown, MA 02129, USA.
2 Genetic Pharmacology Unit, Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, MSC 1406, Bethesda, MD 20892-1406, USA.
3 Department of Microbiology/MSB258, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
*   To whom correspondence should be addressed. E-mail: krainc{at}

Distinct pathways leading to TDP-43-induced cellular dysfunctions.
M. Yamashita, T. Nonaka, S. Hirai, A. Miwa, H. Okado, T. Arai, M. Hosokawa, H. Akiyama, and M. Hasegawa (2014)
Hum. Mol. Genet.
   Abstract »    Full Text »    PDF »
MeCP2: a novel Huntingtin interactor.
K. N. McFarland, M. N. Huizenga, S. B. Darnell, G. R. Sangrey, O. Berezovska, J.-H. J. Cha, T. F. Outeiro, and G. Sadri-Vakili (2014)
Hum. Mol. Genet. 23, 1036-1044
   Abstract »    Full Text »    PDF »
A Phenotypic Screening Assay for Modulators of Huntingtin-Induced Transcriptional Dysregulation.
G. Lazzeroni, T. Benicchi, F. Heitz, L. Magnoni, D. Diamanti, L. Rossini, L. Massai, C. Federico, W. Fecke, A. Caricasole, et al. (2013)
J Biomol Screen 18, 984-996
   Abstract »    Full Text »    PDF »
Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty.
Y.-S. Chen, J. D. Racca, P. W. Sequeira, N. B. Phillips, and M. A. Weiss (2013)
PNAS 110, E3061-E3070
   Abstract »    Full Text »    PDF »
Targeting H3K4 trimethylation in Huntington disease.
M. Vashishtha, C. W. Ng, F. Yildirim, T. A. Gipson, I. H. Kratter, L. Bodai, W. Song, A. Lau, A. Labadorf, A. Vogel-Ciernia, et al. (2013)
PNAS 110, E3027-E3036
   Abstract »    Full Text »    PDF »
The Role of SIRT6 Protein in Aging and Reprogramming of Human Induced Pluripotent Stem Cells.
A. Sharma, S. Diecke, W. Y. Zhang, F. Lan, C. He, N. M. Mordwinkin, K. F. Chua, and J. C. Wu (2013)
J. Biol. Chem. 288, 18439-18447
   Abstract »    Full Text »    PDF »
Extensive changes in DNA methylation are associated with expression of mutant huntingtin.
C. W. Ng, F. Yildirim, Y. S. Yap, S. Dalin, B. J. Matthews, P. J. Velez, A. Labadorf, D. E. Housman, and E. Fraenkel (2013)
PNAS 110, 2354-2359
   Abstract »    Full Text »    PDF »
The Specificity Protein Factor Sp1 Mediates Transcriptional Regulation of P2X7 Receptors in the Nervous System.
P. Garcia-Huerta, M. Diaz-Hernandez, E. G. Delicado, M. Pimentel-Santillana, M. T. Miras-Portugal, and R. Gomez-Villafuertes (2012)
J. Biol. Chem. 287, 44628-44644
   Abstract »    Full Text »    PDF »
A polyglutamine expansion disease protein sequesters PTIP to attenuate DNA repair and increase genomic instability.
H. Xiao, Z. Yu, Y. Wu, J. Nan, D. E. Merry, J. M. Sekiguchi, D. O. Ferguson, A. P. Lieberman, and G. R. Dressler (2012)
Hum. Mol. Genet. 21, 4225-4236
   Abstract »    Full Text »    PDF »
Autophagy and Neuronal Cell Death in Neurological Disorders.
R. A. Nixon and D.-S. Yang (2012)
Cold Spring Harb Perspect Biol 4, a008839
   Abstract »    Full Text »    PDF »
Transducer of regulated CREB-binding proteins (TORCs) transcription and function is impaired in Huntington's disease.
R. K. Chaturvedi, T. Hennessey, A. Johri, S. K. Tiwari, D. Mishra, S. Agarwal, Y. S. Kim, and M. F. Beal (2012)
Hum. Mol. Genet. 21, 3474-3488
   Abstract »    Full Text »    PDF »
Truncated N-terminal huntingtin fragment with expanded-polyglutamine (htt552-100Q) suppresses brain-derived neurotrophic factor transcription in astrocytes.
L. Wang, F. Lin, J. Wang, J. Wu, R. Han, L. Zhu, G. Zhang, M. DiFiglia, and Z. Qin (2012)
Acta Biochim Biophys Sin 44, 249-258
   Abstract »    Full Text »    PDF »
Mass Spectrometric Identification of Novel Lysine Acetylation Sites in Huntingtin.
X. Cong, J. M. Held, F. DeGiacomo, A. Bonner, J. M. Chen, B. Schilling, G. A. Czerwieniec, B. W. Gibson, and L. M. Ellerby (2011)
Mol. Cell. Proteomics 10, M111.009829
   Abstract »    Full Text »    PDF »
A Drosophila model of the neurodegenerative disease SCA17 reveals a role of RBP-J/Su(H) in modulating the pathological outcome.
J. Ren, A. G. Jegga, M. Zhang, J. Deng, J. Liu, C. B. Gordon, B. J. Aronow, L. J. Lu, B. Zhang, and J. Ma (2011)
Hum. Mol. Genet. 20, 3424-3436
   Abstract »    Full Text »    PDF »
FOXO4-dependent upregulation of superoxide dismutase-2 in response to oxidative stress is impaired in spinocerebellar ataxia type 3.
J. Araujo, P. Breuer, S. Dieringer, S. Krauss, S. Dorn, K. Zimmermann, A. Pfeifer, T. Klockgether, U. Wuellner, and B. O. Evert (2011)
Hum. Mol. Genet. 20, 2928-2941
   Abstract »    Full Text »    PDF »
Translational and transcriptional control of Sp1 against ischaemia through a hydrogen peroxide-activated internal ribosomal entry site pathway.
S. H. Yeh, W. B. Yang, P. W. Gean, C. Y. Hsu, J. T. Tseng, T. P. Su, W. C. Chang, and J. J. Hung (2011)
Nucleic Acids Res. 39, 5412-5423
   Abstract »    Full Text »    PDF »
Neuronal expression of TATA box-binding protein containing expanded polyglutamine in knock-in mice reduces chaperone protein response by impairing the function of nuclear factor-Y transcription factor.
S. Huang, J. J. Ling, S. Yang, X.-J. Li, and S. Li (2011)
Brain 134, 1943-1958
   Abstract »    Full Text »    PDF »
Mitochondrial loss, dysfunction and altered dynamics in Huntington's disease.
J. Kim, J. P. Moody, C. K. Edgerly, O. L. Bordiuk, K. Cormier, K. Smith, M. F. Beal, and R. J. Ferrante (2010)
Hum. Mol. Genet. 19, 3919-3935
   Abstract »    Full Text »    PDF »
Modulation of energy deficiency in Huntington's disease via activation of the peroxisome proliferator-activated receptor gamma.
M.-C. Chiang, C.-M. Chen, M.-R. Lee, H.-W. Chen, H.-M. Chen, Y.-S. Wu, C.-H. Hung, J.-J. Kang, C.-P. Chang, C. Chang, et al. (2010)
Hum. Mol. Genet. 19, 4043-4058
   Abstract »    Full Text »    PDF »
Widespread Decrease of Type 1 Cannabinoid Receptor Availability in Huntington Disease In Vivo.
K. Van Laere, C. Casteels, I. Dhollander, K. Goffin, I. Grachev, G. Bormans, and W. Vandenberghe (2010)
J. Nucl. Med. 51, 1413-1417
   Abstract »    Full Text »    PDF »
Impairment of PGC-1alpha expression, neuropathology and hepatic steatosis in a transgenic mouse model of Huntington's disease following chronic energy deprivation.
R. K. Chaturvedi, N. Y. Calingasan, L. Yang, T. Hennessey, A. Johri, and M. F. Beal (2010)
Hum. Mol. Genet. 19, 3190-3205
   Abstract »    Full Text »    PDF »
Polyglutamine Diseases: Where does Toxicity Come from? What is Toxicity? Where are We Going?.
T. Takahashi, S. Katada, and O. Onodera (2010)
J Mol Cell Biol 2, 180-191
   Abstract »    Full Text »    PDF »
Molecular Mechanisms and Potential Therapeutical Targets in Huntington's Disease.
C. Zuccato, M. Valenza, and E. Cattaneo (2010)
Physiol Rev 90, 905-981
   Abstract »    Full Text »    PDF »
Mutant huntingtin fragment selectively suppresses Brn-2 POU domain transcription factor to mediate hypothalamic cell dysfunction.
T. Yamanaka, A. Tosaki, H. Miyazaki, M. Kurosawa, Y. Furukawa, M. Yamada, and N. Nukina (2010)
Hum. Mol. Genet. 19, 2099-2112
   Abstract »    Full Text »    PDF »
Disrupted Transforming Growth Factor-{beta} Signaling in Spinal and Bulbar Muscular Atrophy.
M. Katsuno, H. Adachi, M. Minamiyama, M. Waza, H. Doi, N. Kondo, H. Mizoguchi, A. Nitta, K. Yamada, H. Banno, et al. (2010)
J. Neurosci. 30, 5702-5712
   Abstract »    Full Text »    PDF »
Transcriptional changes in Huntington disease identified using genome-wide expression profiling and cross-platform analysis.
K. Becanovic, M. A. Pouladi, R. S. Lim, A. Kuhn, P. Pavlidis, R. Luthi-Carter, M. R. Hayden, and B. R. Leavitt (2010)
Hum. Mol. Genet. 19, 1438-1452
   Abstract »    Full Text »    PDF »
Improved Activities of CREB Binding Protein, Heterogeneous Nuclear Ribonucleoproteins and Proteasome Following Downregulation of Noncoding hsr{omega} Transcripts Help Suppress Poly(Q) Pathogenesis in Fly Models.
M. Mallik and S. C. Lakhotia (2010)
Genetics 184, 927-945
   Abstract »    Full Text »    PDF »
Impaired Ganglioside Metabolism in Huntington's Disease and Neuroprotective Role of GM1.
V. Maglione, P. Marchi, A. Di Pardo, S. Lingrell, M. Horkey, E. Tidmarsh, and S. Sipione (2010)
J. Neurosci. 30, 4072-4080
   Abstract »    Full Text »    PDF »
Transcriptional dysregulation of TrkA associates with neurodegeneration in spinocerebellar ataxia type 17.
A. G. Shah, M. J. Friedman, S. Huang, M. Roberts, X.-J. Li, and S. Li (2009)
Hum. Mol. Genet. 18, 4141-4152
   Abstract »    Full Text »    PDF »
Activation of Gene Transcription by Heat Shock Protein 27 May Contribute to Its Neuronal Protection.
M. J. Friedman, S. Li, and X.-J. Li (2009)
J. Biol. Chem. 284, 27944-27951
   Abstract »    Full Text »    PDF »
Reciprocal Efficiency of RNQ1 and Polyglutamine Detoxification in the Cytosol and Nucleus.
P. M. Douglas, D. W. Summers, H.-Y. Ren, and D. M. Cyr (2009)
Mol. Biol. Cell 20, 4162-4173
   Abstract »    Full Text »    PDF »
The A2A adenosine receptor rescues the urea cycle deficiency of Huntington's disease by enhancing the activity of the ubiquitin-proteasome system.
M.-C. Chiang, H.-M. Chen, H.-L. Lai, H.-W. Chen, S.-Y. Chou, C.-M. Chen, F.-J. Tsai, and Y. Chern (2009)
Hum. Mol. Genet. 18, 2929-2942
   Abstract »    Full Text »    PDF »
Impaired PGC-1{alpha} function in muscle in Huntington's disease.
R. K. Chaturvedi, P. Adhihetty, S. Shukla, T. Hennessy, N. Calingasan, L. Yang, A. Starkov, M. Kiaei, M. Cannella, J. Sassone, et al. (2009)
Hum. Mol. Genet. 18, 3048-3065
   Abstract »    Full Text »    PDF »
Wild-type but not mutant huntingtin modulates the transcriptional activity of liver X receptors.
M Futter, H Diekmann, E Schoenmakers, O Sadiq, K Chatterjee, and D C Rubinsztein (2009)
J. Med. Genet. 46, 438-446
   Abstract »    Full Text »    PDF »
Cystatin B Deficiency Sensitizes Neurons to Oxidative Stress in Progressive Myoclonus Epilepsy, EPM1.
M. K. Lehtinen, S. Tegelberg, H. Schipper, H. Su, H. Zukor, O. Manninen, O. Kopra, T. Joensuu, P. Hakala, A. Bonni, et al. (2009)
J. Neurosci. 29, 5910-5915
   Abstract »    Full Text »    PDF »
A Large Number of Protein Expression Changes Occur Early in Life and Precede Phenotype Onset in a Mouse Model for Huntington Disease.
C. Zabel, L. Mao, B. Woodman, M. Rohe, M. A. Wacker, Y. Klare, A. Koppelstatter, G. Nebrich, O. Klein, S. Grams, et al. (2009)
Mol. Cell. Proteomics 8, 720-734
   Abstract »    Full Text »    PDF »
TAF4 takes flight.
M. T. Marr II (2009)
PNAS 106, 1295-1296
   Full Text »    PDF »
Congenital hydrocephalus associated with abnormal subcommissural organ in mice lacking huntingtin in Wnt1 cell lineages.
P. Dietrich, R. Shanmugasundaram, S. E, and I. Dragatsis (2009)
Hum. Mol. Genet. 18, 142-150
   Abstract »    Full Text »    PDF »
Huntingtin Modulates Transcription, Occupies Gene Promoters In Vivo, and Binds Directly to DNA in a Polyglutamine-Dependent Manner.
C. L. Benn, T. Sun, G. Sadri-Vakili, K. N. McFarland, D. P. DiRocco, G. J. Yohrling, T. W. Clark, B. Bouzou, and J.-H. J. Cha (2008)
J. Neurosci. 28, 10720-10733
   Abstract »    Full Text »    PDF »
The HDAC inhibitor 4b ameliorates the disease phenotype and transcriptional abnormalities in Huntington's disease transgenic mice.
E. A. Thomas, G. Coppola, P. A. Desplats, B. Tang, E. Soragni, R. Burnett, F. Gao, K. M. Fitzgerald, J. F. Borok, D. Herman, et al. (2008)
PNAS 105, 15564-15569
   Abstract »    Full Text »    PDF »
Dysregulation of Gene Expression in Primary Neuron Models of Huntington's Disease Shows That Polyglutamine-Related Effects on the Striatal Transcriptome May Not Be Dependent on Brain Circuitry.
H. Runne, E. Regulier, A. Kuhn, D. Zala, O. Gokce, V. Perrin, B. Sick, P. Aebischer, N. Deglon, and R. Luthi-Carter (2008)
J. Neurosci. 28, 9723-9731
   Abstract »    Full Text »    PDF »
Expanded-Polyglutamine Huntingtin Protein Suppresses the Secretion and Production of a Chemokine (CCL5/RANTES) by Astrocytes.
S.-Y. Chou, J.-Y. Weng, H.-L. Lai, F. Liao, S. H. Sun, P.-H. Tu, D. W. Dickson, and Y. Chern (2008)
J. Neurosci. 28, 3277-3290
   Abstract »    Full Text »    PDF »
Mutant Huntingtin reduces HSP70 expression through the sequestration of NF-Y transcription factor.
T. Yamanaka, H. Miyazaki, F. Oyama, M. Kurosawa, C. Washizu, H. Doi, and N. Nukina (2008)
EMBO J. 27, 827-839
   Abstract »    Full Text »    PDF »
Neuronal Injury-inducible Gene Is Synergistically Regulated by ATF3, c-Jun, and STAT3 through the Interaction with Sp1 in Damaged Neurons.
S. Kiryu-Seo, R. Kato, T. Ogawa, S. Nakagomi, K. Nagata, and H. Kiyama (2008)
J. Biol. Chem. 283, 6988-6996
   Abstract »    Full Text »    PDF »
RNA-binding Protein TLS Is a Major Nuclear Aggregate-interacting Protein in Huntingtin Exon 1 with Expanded Polyglutamine-expressing Cells.
H. Doi, K. Okamura, P. O. Bauer, Y. Furukawa, H. Shimizu, M. Kurosawa, Y. Machida, H. Miyazaki, K. Mitsui, Y. Kuroiwa, et al. (2008)
J. Biol. Chem. 283, 6489-6500
   Abstract »    Full Text »    PDF »
Thalamic metabolism and symptom onset in preclinical Huntington's disease.
A. Feigin, C. Tang, Y. Ma, P. Mattis, D. Zgaljardic, M. Guttman, J. S. Paulsen, V. Dhawan, and D. Eidelberg (2007)
Brain 130, 2858-2867
   Abstract »    Full Text »    PDF »
Polyglutamine diseases: emerging concepts in pathogenesis and therapy.
J. Shao and M. I. Diamond (2007)
Hum. Mol. Genet. 16, R115-R123
   Abstract »    Full Text »    PDF »
Down-regulation of the dopamine receptor D2 in mice lacking ataxin 1.
R. Goold, M. Hubank, A. Hunt, J. Holton, R. P. Menon, T. Revesz, M. Pandolfo, and A. Matilla-Duenas (2007)
Hum. Mol. Genet. 16, 2122-2134
   Abstract »    Full Text »    PDF »
Differential Repression by Freud-1/CC2D1A at a Polymorphic Site in the Dopamine-D2 Receptor Gene.
A. Rogaeva, X.-M. Ou, H. Jafar-Nejad, S. Lemonde, and P. R. Albert (2007)
J. Biol. Chem. 282, 20897-20905
   Abstract »    Full Text »    PDF »
Conserved region I of human coactivator TAF4 binds to a short hydrophobic motif present in transcriptional regulators.
X. Wang, D. M. Truckses, S. Takada, T. Matsumura, N. Tanese, and R. H. Jacobson (2007)
PNAS 104, 7839-7844
   Abstract »    Full Text »    PDF »
Systematic Uncovering of Multiple Pathways Underlying the Pathology of Huntington Disease by an Acid-cleavable Isotope-coded Affinity Tag Approach.
M.-C. Chiang, C.-G. Juo, H.-H. Chang, H.-M. Chen, E. C. Yi, and Y. Chern (2007)
Mol. Cell. Proteomics 6, 781-797
   Abstract »    Full Text »    PDF »
Yeast TFIID Serves as a Coactivator for Rap1p by Direct Protein-Protein Interaction.
K. A. Garbett, M. K. Tripathi, B. Cencki, J. H. Layer, and P. A. Weil (2007)
Mol. Cell. Biol. 27, 297-311
   Abstract »    Full Text »    PDF »
Morphological Change Caused by Loss of the Taxon-Specific Polyalanine Tract in Hoxd-13.
K. Anan, N. Yoshida, Y. Kataoka, M. Sato, H. Ichise, M. Nasu, and S. Ueda (2007)
Mol. Biol. Evol. 24, 281-287
   Abstract »    Full Text »    PDF »
ESET/SETDB1 gene expression and histone H3 (K9) trimethylation in Huntington's disease.
H. Ryu, J. Lee, S. W. Hagerty, B. Y. Soh, S. E. McAlpin, K. A. Cormier, K. M. Smith, and R. J. Ferrante (2006)
PNAS 103, 19176-19181
   Abstract »    Full Text »    PDF »
Expression of Expanded Polyglutamine Proteins Suppresses the Activation of Transcription Factor NF{kappa}B.
A. Goswami, P. Dikshit, A. Mishra, N. Nukina, and N. R. Jana (2006)
J. Biol. Chem. 281, 37017-37024
   Abstract »    Full Text »    PDF »
Differential Transcriptional Control of the Superoxide Dismutase-2 {kappa}B Element in Neurons and Astrocytes.
X. Mao, A. M. Moerman-Herzog, W. Wang, and S. W. Barger (2006)
J. Biol. Chem. 281, 35863-35872
   Abstract »    Full Text »    PDF »
Context-dependent Dysregulation of Transcription by Mutant Huntingtin.
J. Cornett, L. Smith, M. Friedman, J.-Y. Shin, X.-J. Li, and S.-H. Li (2006)
J. Biol. Chem. 281, 36198-36204
   Abstract »    Full Text »    PDF »
BM88 Is a Dual Function Molecule Inducing Cell Cycle Exit and Neuronal Differentiation of Neuroblastoma Cells via Cyclin D1 Down-regulation and Retinoblastoma Protein Hypophosphorylation.
N. Georgopoulou, C. Hurel, P. K. Politis, M. Gaitanou, R. Matsas, and D. Thomaidou (2006)
J. Biol. Chem. 281, 33606-33620
   Abstract »    Full Text »    PDF »
Polyglutamine neurodegenerative diseases and regulation of transcription: assembling the puzzle..
B. E. Riley and H. T Orr (2006)
Genes & Dev. 20, 2183-2192
   Abstract »    Full Text »    PDF »
A network of protein interactions determines polyglutamine toxicity.
M. L. Duennwald, S. Jagadish, F. Giorgini, P. J. Muchowski, and S. Lindquist (2006)
PNAS 103, 11051-11056
   Abstract »    Full Text »    PDF »
Sp1 Is Up-regulated in Cellular and Transgenic Models of Huntington Disease, and Its Reduction Is Neuroprotective.
Z. Qiu, F. Norflus, B. Singh, M. K. Swindell, R. Buzescu, M. Bejarano, R. Chopra, B. Zucker, C. L. Benn, D. P. DiRocco, et al. (2006)
J. Biol. Chem. 281, 16672-16680
   Abstract »    Full Text »    PDF »
Sodium Butyrate Ameliorates Histone Hypoacetylation and Neurodegenerative Phenotypes in a Mouse Model for DRPLA.
M. Ying, R. Xu, X. Wu, H. Zhu, Y. Zhuang, M. Han, and T. Xu (2006)
J. Biol. Chem. 281, 12580-12586
   Abstract »    Full Text »    PDF »
CA150 expression delays striatal cell death in overexpression and knock-in conditions for mutant huntingtin neurotoxicity..
M. Arango, S. Holbert, D. Zala, E. Brouillet, J. Pearson, E. Regulier, A. K. Thakur, P. Aebischer, R. Wetzel, N. Deglon, et al. (2006)
J. Neurosci. 26, 4649-4659
   Abstract »    Full Text »    PDF »
Arabidopsis GLUTAMINE-RICH PROTEIN23 Is Essential for Early Embryogenesis and Encodes a Novel Nuclear PPR Motif Protein That Interacts with RNA Polymerase II Subunit III.
Y.-H. Ding, N.-Y. Liu, Z.-S. Tang, J. Liu, and W.-C. Yang (2006)
PLANT CELL 18, 815-830
   Abstract »    Full Text »    PDF »
Huntingtin and Mutant SOD1 Form Aggregate Structures with Distinct Molecular Properties in Human Cells.
G. Matsumoto, S. Kim, and R. I. Morimoto (2006)
J. Biol. Chem. 281, 4477-4485
   Abstract »    Full Text »    PDF »
Control of Glut1 promoter activity under basal conditions and in response to hyperosmolarity: role of Sp1.
D.-Y. Hwang and F. Ismail-Beigi (2006)
Am J Physiol Cell Physiol 290, C337-C344
   Abstract »    Full Text »    PDF »
Novel GC-rich DNA-binding compound produced by a genetically engineered mutant of the mithramycin producer Streptomyces argillaceus exhibits improved transcriptional repressor activity: implications for cancer therapy..
V. Albertini, A. Jain, S. Vignati, S. Napoli, A. Rinaldi, I. Kwee, M. Nur-e-Alam, J. Bergant, F. Bertoni, G. M. Carbone, et al. (2006)
Nucleic Acids Res. 34, 1721-1734
   Abstract »    Full Text »    PDF »
Expression of mutant huntingtin in glial cells contributes to neuronal excitotoxicity.
J.-Y. Shin, Z.-H. Fang, Z.-X. Yu, C.-E. Wang, S.-H. Li, and X.-J. Li (2005)
J. Cell Biol. 171, 1001-1012
   Abstract »    Full Text »    PDF »
Activation of AP-1-Dependent Transcription by a Truncated Translation Initiation Factor.
C. C. L. Jenkins, J. Mata, R. F. Crane, B. Thomas, A. Akoulitchev, J. Bahler, and C. J. Norbury (2005)
Eukaryot. Cell 4, 1840-1850
   Abstract »    Full Text »    PDF »
Hsp90{alpha} Recruited by Sp1 Is Important for Transcription of 12(S)-Lipoxygenase in A431 Cells.
J.-J. Hung, C.-Y. Wu, P.-C. Liao, and W.-C. Chang (2005)
J. Biol. Chem. 280, 36283-36292
   Abstract »    Full Text »    PDF »
Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington's disease mouse model.
T. Nguyen, A. Hamby, and S. M. Massa (2005)
PNAS 102, 11840-11845
   Abstract »    Full Text »    PDF »
Genome-wide expression profiling of human blood reveals biomarkers for Huntington's disease.
F. Borovecki, L. Lovrecic, J. Zhou, H. Jeong, F. Then, H. D. Rosas, S. M. Hersch, P. Hogarth, B. Bouzou, R. V. Jensen, et al. (2005)
PNAS 102, 11023-11028
   Abstract »    Full Text »    PDF »
Neurodegenerative disorders: Parkinson's disease and Huntington's disease.
S M Hague, S Klaffke, and O Bandmann (2005)
J. Neurol. Neurosurg. Psychiatry 76, 1058-1063
   Abstract »    Full Text »    PDF »
cAMP-response element-binding protein and heat-shock protein 70 additively suppress polyglutamine-mediated toxicity in Drosophila.
K. Iijima-Ando, P. Wu, E. A. Drier, K. Iijima, and J. C. P. Yin (2005)
PNAS 102, 10261-10266
   Abstract »    Full Text »    PDF »
Distinct transcriptional regulation and function of the human BACE2 and BACE1 genes.
X. Sun, Y. Wang, H. Qing, M. A. Christensen, Y. Liu, W. Zhou, Y. Tong, C. Xiao, Y. Huang, S. Zhang, et al. (2005)
FASEB J 19, 739-749
   Abstract »    Full Text »    PDF »
cAMP-response Element-binding Protein Contributes to Suppression of the A2A Adenosine Receptor Promoter by Mutant Huntingtin with Expanded Polyglutamine Residues.
M.-C. Chiang, Y.-C. Lee, C.-L. Huang, and Y. Chern (2005)
J. Biol. Chem. 280, 14331-14340
   Abstract »    Full Text »    PDF »
Conserved and specific functions of mammalian ssu72.
B. St-Pierre, X. Liu, L.-C. T. Kha, X. Zhu, O. Ryan, Z. Jiang, and E. Zacksenhaus (2005)
Nucleic Acids Res. 33, 464-477
   Abstract »    Full Text »    PDF »
Transcriptional dysregulation in striatal projection- and interneurons in a mouse model of Huntington's disease: neuronal selectivity and potential neuroprotective role of HAP1.
B. Zucker, R. Luthi-Carter, J. A. Kama, A. W. Dunah, E. A. Stern, J. H. Fox, D. G. Standaert, A. B. Young, and S. J. Augood (2005)
Hum. Mol. Genet. 14, 179-189
   Abstract »    Full Text »    PDF »
The Repressor Element Silencing Transcription Factor (REST)-mediated Transcriptional Repression Requires the Inhibition of Sp1.
V. Plaisance, G. Niederhauser, F. Azzouz, V. Lenain, J.-A. Haefliger, G. Waeber, and A. Abderrahmani (2005)
J. Biol. Chem. 280, 401-407
   Abstract »    Full Text »    PDF »
Neuroprotective Effects of Phenylbutyrate in the N171-82Q Transgenic Mouse Model of Huntington's Disease.
G. Gardian, S. E. Browne, D.-K. Choi, P. Klivenyi, J. Gregorio, J. K. Kubilus, H. Ryu, B. Langley, R. R. Ratan, R. J. Ferrante, et al. (2005)
J. Biol. Chem. 280, 556-563
   Abstract »    Full Text »    PDF »
Chemotherapy for the Brain: The Antitumor Antibiotic Mithramycin Prolongs Survival in a Mouse Model of Huntington's Disease.
R. J. Ferrante, H. Ryu, J. K. Kubilus, S. D'Mello, K. L. Sugars, J. Lee, P. Lu, K. Smith, S. Browne, M. F. Beal, et al. (2004)
J. Neurosci. 24, 10335-10342
   Abstract »    Full Text »    PDF »
Trinucleotide repeats and neurodegenerative disease.
C. M. Everett and N. W. Wood (2004)
Brain 127, 2385-2405
   Abstract »    Full Text »    PDF »
Huntingtin and the molecular pathogenesis of Huntington's disease: Fourth in Molecular Medicine Review Series.
C. Landles and G. P. Bates (2004)
EMBO Rep. 5, 958-963
   Full Text »    PDF »
Huntington and its Role in Neuronal Degeneration.
S.-H. Li and X.-J. Li (2004)
Neuroscientist 10, 467-475
   Abstract »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882