Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 297 (5578): 114-116

Copyright © 2002 by the American Association for the Advancement of Science

Activation of Drosophila Toll During Fungal Infection by a Blood Serine Protease

Petros Ligoxygakis, Nadège Pelte, Jules A. Hoffmann, Jean-Marc Reichhart*

Drosophila host defense to fungal and Gram-positive bacterial infection is mediated by the Spaetzle/Toll/cactus gene cassette. It has been proposed that Toll does not function as a pattern recognition receptor per se but is activated through a cleaved form of the cytokine Spaetzle. The upstream events linking infection to the cleavage of Spaetzle have long remained elusive. Here we report the identification of a central component of the fungal activation of Toll. We show that ethylmethane sulfonate-induced mutations in the persephone gene, which encodes a previously unknown serine protease, block induction of the Toll pathway by fungi and resistance to this type of infection.

Institut de Biologie Moléculaire et Cellulaire, UPR 9022 du CNRS, 15 rue R. Descartes, F67084 Strasbourg Cedex, France.
*   To whom correspondence should be addressed. E-mail: jm.reichhart{at}ibmc.u-strasbg.fr



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Persephone/Spatzle Pathogen Sensors Mediate the Activation of Toll Receptor Signaling in Response to Endogenous Danger Signals in Apoptosis-deficient Drosophila.
M. Ming, F. Obata, E. Kuranaga, and M. Miura (2014)
J. Biol. Chem. 289, 7558-7568
   Abstract »    Full Text »    PDF »
Calpain A modulates Toll responses by limited Cactus/I{kappa}B proteolysis.
M. Fontenele, B. Lim, D. Oliveira, M. Buffolo, D. H. Perlman, T. Schupbach, and H. Araujo (2013)
Mol. Biol. Cell 24, 2966-2980
   Abstract »    Full Text »    PDF »
The Drosophila Toll Pathway Controls but Does Not Clear Candida glabrata Infections.
J. Quintin, J. Asmar, A. A. Matskevich, M.-C. Lafarge, and D. Ferrandon (2013)
J. Immunol. 190, 2818-2827
   Abstract »    Full Text »    PDF »
Drosophila as a model system to unravel the layers of innate immunity to infection.
I. Kounatidis and P. Ligoxygakis (2012)
Open Bio 2, 120075
   Abstract »    Full Text »    PDF »
Spn1 Regulates the GNBP3-Dependent Toll Signaling Pathway in Drosophila melanogaster.
A. Fullaondo, S. Garcia-Sanchez, A. Sanz-Parra, E. Recio, S. Y. Lee, and D. Gubb (2011)
Mol. Cell. Biol. 31, 2960-2972
   Abstract »    Full Text »    PDF »
Wild-type Drosophila melanogaster as an alternative model system for investigating the pathogenicity of Candida albicans.
M. T. Glittenberg, S. Silas, D. M. MacCallum, N. A. R. Gow, and P. Ligoxygakis (2011)
Dis. Model. Mech. 4, 504-514
   Abstract »    Full Text »    PDF »
Structure-Function Analysis of Grass Clip Serine Protease Involved in Drosophila Toll Pathway Activation.
C. Kellenberger, P. Leone, L. Coquet, T. Jouenne, J.-M. Reichhart, and A. Roussel (2011)
J. Biol. Chem. 286, 12300-12307
   Abstract »    Full Text »    PDF »
Diversity of Innate Immune Recognition Mechanism for Bacterial Polymeric meso-Diaminopimelic Acid-type Peptidoglycan in Insects.
Y. Yu, J.-W. Park, H.-M. Kwon, H.-O. Hwang, I.-H. Jang, A. Masuda, K. Kurokawa, H. Nakayama, W.-J. Lee, N. Dohmae, et al. (2010)
J. Biol. Chem. 285, 32937-32945
   Abstract »    Full Text »    PDF »
Serpins Flex Their Muscle: I. PUTTING THE CLAMPS ON PROTEOLYSIS IN DIVERSE BIOLOGICAL SYSTEMS.
G. A. Silverman, J. C. Whisstock, S. P. Bottomley, J. A. Huntington, D. Kaiserman, C. J. Luke, S. C. Pak, J.-M. Reichhart, and P. I. Bird (2010)
J. Biol. Chem. 285, 24299-24305
   Abstract »    Full Text »    PDF »
Extracellular and intracellular pathogen recognition by Drosophila PGRP-LE and PGRP-LC.
S. Kurata (2010)
Int. Immunol. 22, 143-148
   Abstract »    Full Text »    PDF »
NF-{kappa}B in the Immune Response of Drosophila.
C. Hetru and J. A. Hoffmann (2009)
Cold Spring Harb Perspect Biol 1, a000232
   Abstract »    Full Text »    PDF »
A single modular serine protease integrates signals from pattern-recognition receptors upstream of the Drosophila Toll pathway.
N. Buchon, M. Poidevin, H.-M. Kwon, A. Guillou, V. Sottas, B.-L. Lee, and B. Lemaitre (2009)
PNAS 106, 12442-12447
   Abstract »    Full Text »    PDF »
Functions of Manduca sexta Hemolymph Proteinases HP6 and HP8 in Two Innate Immune Pathways.
C. An, J. Ishibashi, E. J. Ragan, H. Jiang, and M. R. Kanost (2009)
J. Biol. Chem. 284, 19716-19726
   Abstract »    Full Text »    PDF »
Proteolytic Cascade for the Activation of the Insect Toll Pathway Induced by the Fungal Cell Wall Component.
K.-B. Roh, C.-H. Kim, H. Lee, H.-M. Kwon, J.-W. Park, J.-H. Ryu, K. Kurokawa, N.-C. Ha, W.-J. Lee, B. Lemaitre, et al. (2009)
J. Biol. Chem. 284, 19474-19481
   Abstract »    Full Text »    PDF »
Drosophila Toll Pathway: The New Model.
Y. Ashok (2009)
Science Signaling 2, jc1
   Abstract »    Full Text »    PDF »
Gene induction following wounding of wild-type versus macrophage-deficient Drosophila embryos.
B. Stramer, M. Winfield, T. Shaw, T. H. Millard, S. Woolner, and P. Martin (2008)
EMBO Rep. 9, 465-471
   Abstract »    Full Text »    PDF »
Drosomycin-Like Defensin, a Human Homologue of Drosophila melanogaster Drosomycin with Antifungal Activity.
A. Simon, B. J. Kullberg, B. Tripet, O. C. Boerman, P. Zeeuwen, J. van der Ven-Jongekrijg, P. Verweij, J. Schalkwijk, R. Hodges, J. W. M. van der Meer, et al. (2008)
Antimicrob. Agents Chemother. 52, 1407-1412
   Abstract »    Full Text »    PDF »
A Three-step Proteolytic Cascade Mediates the Activation of the Peptidoglycan-induced Toll Pathway in an Insect.
C.-H. Kim, S.-J. Kim, H. Kan, H.-M. Kwon, K.-B. Roh, R. Jiang, Y. Yang, J.-W. Park, H.-H. Lee, N.-C. Ha, et al. (2008)
J. Biol. Chem. 283, 7599-7607
   Abstract »    Full Text »    PDF »
Infection-induced proteolysis of PGRP-LC controls the IMD activation and melanization cascades in Drosophila.
R. L. Schmidt, T. R. Trejo, T. B. Plummer, J. L. Platt, and A. H. Tang (2008)
FASEB J 22, 918-929
   Abstract »    Full Text »    PDF »
Evidence for Positive Selection on Drosophila melanogaster Seminal Fluid Protease Homologs.
A. Wong, M. C. Turchin, M. F. Wolfner, and C. F. Aquadro (2008)
Mol. Biol. Evol. 25, 497-506
   Abstract »    Full Text »    PDF »
Toll and IMD Pathways Synergistically Activate an Innate Immune Response in Drosophila melanogaster.
T. Tanji, X. Hu, A. N. R. Weber, and Y. T. Ip (2007)
Mol. Cell. Biol. 27, 4578-4588
   Abstract »    Full Text »    PDF »
Crystal Structure of the Serine Protease Domain of Prophenoloxidase Activating Factor-I.
S. Piao, S. Kim, J. H. Kim, J. W. Park, B. L. Lee, and N.-C. Ha (2007)
J. Biol. Chem. 282, 10783-10791
   Abstract »    Full Text »    PDF »
Fungal Peptide Destruxin A Plays a Specific Role in Suppressing the Innate Immune Response in Drosophila melanogaster.
S. Pal, R. J. St. Leger, and L. P. Wu (2007)
J. Biol. Chem. 282, 8969-8977
   Abstract »    Full Text »    PDF »
Two Proteases Defining a Melanization Cascade in the Immune System of Drosophila.
H. Tang, Z. Kambris, B. Lemaitre, and C. Hashimoto (2006)
J. Biol. Chem. 281, 28097-28104
   Abstract »    Full Text »    PDF »
Inhibitory Activity of the Drosophila melanogaster Serpin Necrotic Is Dependent on Lysine Residues in the D-helix.
A. S. Robertson, D. Belorgey, D. Gubb, T. R. Dafforn, and D. A. Lomas (2006)
J. Biol. Chem. 281, 26437-26443
   Abstract »    Full Text »    PDF »
Melanotic Mutants in Drosophila: Pathways and Phenotypes.
S. Minakhina and R. Steward (2006)
Genetics 174, 253-263
   Abstract »    Full Text »    PDF »
Interaction of beta-1,3-Glucan with Its Recognition Protein Activates Hemolymph Proteinase 14, an Initiation Enzyme of the Prophenoloxidase Activation System in Manduca sexta.
Y. Wang and H. Jiang (2006)
J. Biol. Chem. 281, 9271-9278
   Abstract »    Full Text »    PDF »
Prophenoloxidase activation is not required for survival to microbial infections in Drosophila.
V. Leclerc, N. Pelte, L. E. Chamy, C. Martinelli, P. Ligoxygakis, J. A. Hoffmann, and J.-M. Reichhart (2006)
EMBO Rep. 7, 231-235
   Abstract »    Full Text »    PDF »
Analysis of Homologous Gene Clusters in Caenorhabditis elegans Reveals Striking Regional Cluster Domains.
J. H. Thomas (2006)
Genetics 172, 127-143
   Abstract »    Full Text »    PDF »
Crystal structure of a clip-domain serine protease and functional roles of the clip domains.
S. Piao, Y.-L. Song, J. H. Kim, S. Y. Park, J. W. Park, B. L. Lee, B.-H. Oh, and N.-C. Ha (2005)
EMBO J. 24, 4404-4414
   Abstract »    Full Text »    PDF »
The Roles of Two Clip Domain Serine Proteases in Innate Immune Responses of the Malaria Vector Anopheles gambiae.
J. Volz, M. A. Osta, F. C. Kafatos, and H.-M. Muller (2005)
J. Biol. Chem. 280, 40161-40168
   Abstract »    Full Text »    PDF »
Conserved mechanisms of signal transduction by Toll and Toll-like receptors.
M. Gangloff, A. N.R. Weber, and N. J. Gay (2005)
Innate Immunity 11, 294-298
   Abstract »    PDF »
Evolution and integration of innate immune systems from fruit flies to man: lessons and questions.
C. Martinelli and J.-M. Reichhart (2005)
Innate Immunity 11, 243-248
   Abstract »    PDF »
Ligand-Receptor and Receptor-Receptor Interactions Act in Concert to Activate Signaling in the Drosophila Toll Pathway.
A. N. R. Weber, M. C. Moncrieffe, M. Gangloff, J.-L. Imler, and N. J. Gay (2005)
J. Biol. Chem. 280, 22793-22799
   Abstract »    Full Text »    PDF »
Manduca sexta Serpin-4 and Serpin-5 Inhibit the Prophenol Oxidase Activation Pathway: cDNA CLONING, PROTEIN EXPRESSION, AND CHARACTERIZATION.
Y. Tong and M. R. Kanost (2005)
J. Biol. Chem. 280, 14923-14931
   Abstract »    Full Text »    PDF »
Identification of Plasma Proteases Inhibited by Manduca sexta Serpin-4 and Serpin-5 and Their Association with Components of the Prophenol Oxidase Activation Pathway.
Y. Tong, H. Jiang, and M. R. Kanost (2005)
J. Biol. Chem. 280, 14932-14942
   Abstract »    Full Text »    PDF »
Drosophila peptidoglycan recognition protein LC (PGRP-LC) acts as a signal-transducing innate immune receptor.
K.-M. Choe, H. Lee, and K. V. Anderson (2005)
PNAS 102, 1122-1126
   Abstract »    Full Text »    PDF »
Toll-like receptors in innate immunity.
K. Takeda and S. Akira (2005)
Int. Immunol. 17, 1-14
   Abstract »    Full Text »    PDF »
Peptidoglycan recognition protein (PGRP)-LE and PGRP-LC act synergistically in Drosophila immunity.
A. Takehana, T. Yano, S. Mita, A. Kotani, Y. Oshima, and S. Kurata (2004)
EMBO J. 23, 4690-4700
   Abstract »    Full Text »    PDF »
A Pattern Recognition Serine Proteinase Triggers the Prophenoloxidase Activation Cascade in the Tobacco Hornworm, Manduca sexta.
C. Ji, Y. Wang, X. Guo, S. Hartson, and H. Jiang (2004)
J. Biol. Chem. 279, 34101-34106
   Abstract »    Full Text »    PDF »
Toll-dependent and Toll-independent immune responses in Drosophila.
J.-L. Imler, D. Ferrandon, J. Royet, J.-M. Reichhart, C. Hetru, and J. A. Hoffmann (2004)
Innate Immunity 10, 241-246
   Abstract »    PDF »
Innate immunity in the malaria vector Anopheles gambiae: comparative and functional genomics.
M. A. Osta, G. K. Christophides, D. Vlachou, and F. C. Kafatos (2004)
J. Exp. Biol. 207, 2551-2563
   Abstract »    Full Text »    PDF »
Multimerization and interaction of Toll and Spatzle in Drosophila.
X. Hu, Y. Yagi, T. Tanji, S. Zhou, and Y. T. Ip (2004)
PNAS 101, 9369-9374
   Abstract »    Full Text »    PDF »
In Vivo RNA Interference Analysis Reveals an Unexpected Role for GNBP1 in the Defense against Gram-positive Bacterial Infection in Drosophila Adults.
S. Pili-Floury, F. Leulier, K. Takahashi, K. Saigo, E. Samain, R. Ueda, and B. Lemaitre (2004)
J. Biol. Chem. 279, 12848-12853
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Systemic Immune Response of Drosophila.
F. Levy, P. Bulet, and L. Ehret-Sabatier (2004)
Mol. Cell. Proteomics 3, 156-166
   Abstract »    Full Text »    PDF »
A serine protease zymogen functions as a pattern-recognition receptor for lipopolysaccharides.
S. Ariki, K. Koori, T. Osaki, K. Motoyama, K.-i. Inamori, and S.-i. Kawabata (2004)
PNAS 101, 953-958
   Abstract »    Full Text »    PDF »
LRR-containing receptors regulating plant development and defense.
A. Dievart and S. E. Clark (2004)
Development 131, 251-261
   Abstract »    Full Text »    PDF »
The Homeobox Gene Caudal Regulates Constitutive Local Expression of Antimicrobial Peptide Genes in Drosophila Epithelia.
J.-H. Ryu, K.-B. Nam, C.-T. Oh, H.-J. Nam, S.-H. Kim, J.-H. Yoon, J.-K. Seong, M.-A. Yoo, I.-H. Jang, P. T. Brey, et al. (2004)
Mol. Cell. Biol. 24, 172-185
   Abstract »    Full Text »    PDF »
Biology of Toll receptors: lessons from insects and mammals.
J.-L. Imler and L. Zheng (2004)
J. Leukoc. Biol. 75, 18-26
   Abstract »    Full Text »    PDF »
Dual Activation of the Drosophila Toll Pathway by Two Pattern Recognition Receptors.
V. Gobert, M. Gottar, A. A. Matskevich, S. Rutschmann, J. Royet, M. Belvin, J. A. Hoffmann, and D. Ferrandon (2003)
Science 302, 2126-2130
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of Limulus Factor C: REPRESSION OF AN NF{kappa}B MOTIF MODULATES ITS RESPONSIVENESS TO BACTERIAL LIPOPOLYSACCHARIDE.
L. Wang, B. Ho, and J. L. Ding (2003)
J. Biol. Chem. 278, 49428-49437
   Abstract »    Full Text »    PDF »
Role of Toll-Like Receptors in Pathogen Recognition.
S. Janssens and R. Beyaert (2003)
Clin. Microbiol. Rev. 16, 637-646
   Abstract »    Full Text »    PDF »
Drosophila melanogaster Antimicrobial Defense.
C. Hetru, L. Troxler, and J. A. Hoffmann (2003)
The Journal of Infectious Disease 187, S327-S334
   Abstract »    Full Text »    PDF »
The Interleukin-1 Receptor/Toll-Like Receptor Superfamily: Signal Transduction During Inflammation and Host Defense.
A. Dunne and L. A. J. O'Neill (2003)
Sci. STKE 2003, re3
   Abstract »    Full Text »    PDF »
Characterization of the Necrotic Protein That Regulates the Toll-mediated Immune Response in Drosophila.
A. S. Robertson, D. Belorgey, K. S. Lilley, D. A. Lomas, D. Gubb, and T. R. Dafforn (2003)
J. Biol. Chem. 278, 6175-6180
   Abstract »    Full Text »    PDF »
Cloning and Characterization of Four Anopheles gambiae Serpin Isoforms, Differentially Induced in the Midgut by Plasmodium berghei Invasion.
A. Danielli, F. C. Kafatos, and T. G. Loukeris (2003)
J. Biol. Chem. 278, 4184-4193
   Abstract »    Full Text »    PDF »
A serpin mutant links Toll activation to melanization in the host defence of Drosophila.
P. Ligoxygakis, N. Pelte, C. Ji, V. Leclerc, B. Duvic, M. Belvin, H. Jiang, J. A. Hoffmann, and J.-M. Reichhart (2002)
EMBO J. 21, 6330-6337
   Abstract »    Full Text »    PDF »
Immunity-Related Genes and Gene Families in Anopheles gambiae.
G. K. Christophides, E. Zdobnov, C. Barillas-Mury, E. Birney, S. Blandin, C. Blass, P. T. Brey, F. H. Collins, A. Danielli, G. Dimopoulos, et al. (2002)
Science 298, 159-165
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882