Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 297 (5579): 243-246

Copyright © 2002 by the American Association for the Advancement of Science

Multiple Roles of Arabidopsis VRN1 in Vernalization and Flowering Time Control

Yaron Y. Levy,* Stéphane Mesnage,*dagger Joshua S. Mylne, Anthony R. Gendall,ddagger Caroline Dean§

Arabidopsis VRN genes mediate vernalization, the process by which a long period of cold induces a mitotically stable state that leads to accelerated flowering during later development. VRN1 encodes a protein that binds DNA in vitro in a non-sequence-specific manner and functions in stable repression of the major target of the vernalization pathway, the floral repressor FLC. Overexpression of VRN1 reveals a vernalization-independent function for VRN1, mediated predominantly through the floral pathway integrator FT, and demonstrates that VRN1 requires vernalization-specific factors to target FLC.

Department of Cell and Developmental Biology, John Innes Centre, Colney Lane, Norwich NR4 7UH, UK
*   These authors contributed equally to this work.

dagger    Present address: Laboratoire de Recherche Moléculaire sur les Antibiotiques, 15 rue de l'Ecole de Médecine, 75006 Paris, France.

ddagger    Present address: Department of Botany, La Trobe University, Bundoora, Victoria, 3083, Australia.

§   To whom correspondence should be addressed. E-mail: caroline.dean{at}

PRC1 Marks the Difference in Plant PcG Repression.
M. Calonje (2014)
Mol Plant 7, 459-471
   Abstract »    Full Text »    PDF »
DNA-binding specificities of plant transcription factors and their potential to define target genes.
J. M. Franco-Zorrilla, I. Lopez-Vidriero, J. L. Carrasco, M. Godoy, P. Vera, and R. Solano (2014)
PNAS 111, 2367-2372
   Abstract »    Full Text »    PDF »
Interaction of Photoperiod and Vernalization Determines Flowering Time of Brachypodium distachyon.
T. S. Ream, D. P. Woods, C. J. Schwartz, C. P. Sanabria, J. A. Mahoy, E. M. Walters, H. F. Kaeppler, and R. M. Amasino (2014)
Plant Physiology 164, 694-709
   Abstract »    Full Text »    PDF »
Acceleration of flowering in Arabidopsis thaliana by Cape Verde Islands alleles of FLOWERING H is dependent on the floral promoter FD.
N. Seedat, A. Dinsdale, E. K. Ong, and A. R. Gendall (2013)
J. Exp. Bot. 64, 2767-2778
   Abstract »    Full Text »    PDF »
The Arabidopsis B3 Domain Protein VERNALIZATION1 (VRN1) Is Involved in Processes Essential for Development, with Structural and Mutational Studies Revealing Its DNA-binding Surface.
G. J. King, A. H. Chanson, E. J. McCallum, M. Ohme-Takagi, K. Byriel, J. M. Hill, J. L. Martin, and J. S. Mylne (2013)
J. Biol. Chem. 288, 3198-3207
   Abstract »    Full Text »    PDF »
Vernalization - a cold-induced epigenetic switch.
J. Song, A. Angel, M. Howard, and C. Dean (2012)
J. Cell Sci. 125, 3723-3731
   Abstract »    Full Text »    PDF »
Ca2+-dependent GTPase, Extra-large G Protein 2 (XLG2), Promotes Activation of DNA-binding Protein Related to Vernalization 1 (RTV1), Leading to Activation of Floral Integrator Genes and Early Flowering in Arabidopsis.
J. B. Heo, S. Sung, and S. M. Assmann (2012)
J. Biol. Chem. 287, 8242-8253
   Abstract »    Full Text »    PDF »
The Arabidopsis E3 Ubiquitin Ligase HOS1 Negatively Regulates CONSTANS Abundance in the Photoperiodic Control of Flowering.
A. Lazaro, F. Valverde, M. Pineiro, and J. A. Jarillo (2012)
PLANT CELL 24, 982-999
   Abstract »    Full Text »    PDF »
The Molecular Basis of Vernalization in Different Plant Groups.
T. S. Ream, D. P. Woods, and R. M. Amasino (2012)
Cold Spring Harb Symp Quant Biol 77, 105-115
   Abstract »    Full Text »    PDF »
Polycomb Group Complexes Mediate Developmental Transitions in Plants.
S. Holec and F. Berger (2012)
Plant Physiology 158, 35-43
   Full Text »    PDF »
Contributions of Flowering Time Genes to Sunflower Domestication and Improvement.
B. K. Blackman, D. A. Rasmussen, J. L. Strasburg, A. R. Raduski, J. M. Burke, S. J. Knapp, S. D. Michaels, and L. H. Rieseberg (2011)
Genetics 187, 271-287
   Abstract »    Full Text »    PDF »
The CURLY LEAF Interacting Protein BLISTER Controls Expression of Polycomb-Group Target Genes and Cellular Differentiation of Arabidopsis thaliana.
N. Schatlowski, Y. Stahl, M. L. Hohenstatt, J. Goodrich, and D. Schubert (2010)
PLANT CELL 22, 2291-2305
   Abstract »    Full Text »    PDF »
VERDANDI Is a Direct Target of the MADS Domain Ovule Identity Complex and Affects Embryo Sac Differentiation in Arabidopsis.
L. Matias-Hernandez, R. Battaglia, F. Galbiati, M. Rubes, C. Eichenberger, U. Grossniklaus, M. M. Kater, and L. Colombo (2010)
PLANT CELL 22, 1702-1715
   Abstract »    Full Text »    PDF »
BrFLC2 (FLOWERING LOCUS C) as a candidate gene for a vernalization response QTL in Brassica rapa.
J. Zhao, V. Kulkarni, N. Liu, D. Pino Del Carpio, J. Bucher, and G. Bonnema (2010)
J. Exp. Bot. 61, 1817-1825
   Abstract »    Full Text »    PDF »
From Decision to Commitment: The Molecular Memory of Flowering.
J. Adrian, S. Torti, and F. Turck (2009)
Mol Plant 2, 628-642
   Abstract »    Full Text »    PDF »
Histone Acetylation, VERNALIZATION INSENSITIVE 3, FLOWERING LOCUS C, and the Vernalization Response.
D. M. Bond, E. S. Dennis, B. J. Pogson, and E. J. Finnegan (2009)
Mol Plant 2, 724-737
   Abstract »    Full Text »    PDF »
Control of the Transition to Flowering by Chromatin Modifications.
Y. He (2009)
Mol Plant 2, 554-564
   Abstract »    Full Text »    PDF »
A PHD-Polycomb Repressive Complex 2 triggers the epigenetic silencing of FLC during vernalization.
F. De Lucia, P. Crevillen, A. M. E. Jones, T. Greb, and C. Dean (2008)
PNAS 105, 16831-16836
   Abstract »    Full Text »    PDF »
CressExpress: A Tool For Large-Scale Mining of Expression Data from Arabidopsis.
V. Srinivasasainagendra, G. P. Page, T. Mehta, I. Coulibaly, and A. E. Loraine (2008)
Plant Physiology 147, 1004-1016
   Abstract »    Full Text »    PDF »
FLC or not FLC: the other side of vernalization.
C. M. Alexandre and L. Hennig (2008)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
ARABIDOPSIS TRITHORAX1 Dynamically Regulates FLOWERING LOCUS C Activation via Histone 3 Lysine 4 Trimethylation.
S. Pien, D. Fleury, J. S. Mylne, P. Crevillen, D. Inze, Z. Avramova, C. Dean, and U. Grossniklaus (2008)
PLANT CELL 20, 580-588
   Abstract »    Full Text »    PDF »
Hd3a and RFT1 are essential for flowering in rice.
R. Komiya, A. Ikegami, S. Tamaki, S. Yokoi, and K. Shimamoto (2008)
Development 135, 767-774
   Abstract »    Full Text »    PDF »
EMBRYONIC FLOWER1 Participates in Polycomb Group-Mediated AG Gene Silencing in Arabidopsis.
M. Calonje, R. Sanchez, L. Chen, and Z. R. Sung (2008)
PLANT CELL 20, 277-291
   Abstract »    Full Text »    PDF »
Histone arginine methylation is required for vernalization-induced epigenetic silencing of FLC in winter-annual Arabidopsis thaliana.
R. J. Schmitz, S. Sung, and R. M. Amasino (2008)
PNAS 105, 411-416
   Abstract »    Full Text »    PDF »
Discrete Developmental Roles for Temperate Cereal Grass VERNALIZATION1/FRUITFULL-Like Genes in Flowering Competency and the Transition to Flowering.
J. C. Preston and E. A. Kellogg (2008)
Plant Physiology 146, 265-276
   Abstract »    Full Text »    PDF »
Differential Expression of Genes Important for Adaptation in Capsella bursa-pastoris (Brassicaceae).
T. Slotte, K. Holm, L. M. McIntyre, U. Lagercrantz, and M. Lascoux (2007)
Plant Physiology 145, 160-173
   Abstract »    Full Text »    PDF »
Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity.
J. Cockram, H. Jones, F. J. Leigh, D. O'Sullivan, W. Powell, D. A. Laurie, and A. J. Greenland (2007)
J. Exp. Bot.
   Abstract »    Full Text »    PDF »
SKB1-mediated symmetric dimethylation of histone H4R3 controls flowering time in Arabidopsis.
X. Wang, Y. Zhang, Q. Ma, Z. Zhang, Y. Xue, S. Bao, and K. Chong (2007)
EMBO J. 26, 1934-1941
   Abstract »    Full Text »    PDF »
Small RNA-mediated chromatin silencing directed to the 3' region of the Arabidopsis gene encoding the developmental regulator, FLC.
S. Swiezewski, P. Crevillen, F. Liu, J. R. Ecker, A. Jerzmanowski, and C. Dean (2007)
PNAS 104, 3633-3638
   Abstract »    Full Text »    PDF »
Role of SVP in the control of flowering time by ambient temperature in Arabidopsis.
J. H. Lee, S. J. Yoo, S. H. Park, I. Hwang, J. S. Lee, and J. H. Ahn (2007)
Genes & Dev. 21, 397-402
   Abstract »    Full Text »    PDF »
Repression of the LEAFY COTYLEDON 1/B3 Regulatory Network in Plant Embryo Development by VP1/ABSCISIC ACID INSENSITIVE 3-LIKE B3 Genes.
M. Suzuki, H. H.-Y. Wang, and D. R. McCarty (2007)
Plant Physiology 143, 902-911
   Abstract »    Full Text »    PDF »
Variation in the epigenetic silencing of FLC contributes to natural variation in Arabidopsis vernalization response..
C. Shindo, C. Lister, P. Crevillen, M. Nordborg, and C. Dean (2006)
Genes & Dev. 20, 3079-3083
   Abstract »    Full Text »    PDF »
SUPPRESSOR OF FRIGIDA4, Encoding a C2H2-Type Zinc Finger Protein, Represses Flowering by Transcriptional Activation of Arabidopsis FLOWERING LOCUS C.
S. Kim, K. Choi, C. Park, H.-J. Hwang, and I. Lee (2006)
PLANT CELL 18, 2985-2998
   Abstract »    Full Text »    PDF »
Additional targets of the Arabidopsis autonomous pathway members, FCA and FY.
S Marquardt, P. Boss, J Hadfield, and C Dean (2006)
J. Exp. Bot. 57, 3379-3386
   Abstract »    Full Text »    PDF »
Molecular genetic studies of the memory of winter.
S. Sung and R. M. Amasino (2006)
J. Exp. Bot. 57, 3369-3377
   Abstract »    Full Text »    PDF »
Arabidopsis Carboxyl-Terminal Domain Phosphatase-Like Isoforms Share Common Catalytic and Interaction Domains But Have Distinct in Planta Functions.
W. Bang, S. Kim, A. Ueda, M. Vikram, D. Yun, R. A. Bressan, P. M. Hasegawa, J. Bahk, and H. Koiwa (2006)
Plant Physiology 142, 586-594
   Abstract »    Full Text »    PDF »
Polycomb-group proteins repressthe floral activator AGL19 in the FLC-independent vernalization pathway..
N. Schonrock, R. Bouveret, O. Leroy, L. Borghi, C. Kohler, W. Gruissem, and L. Hennig (2006)
Genes & Dev. 20, 1667-1678
   Abstract »    Full Text »    PDF »
The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis..
I. Searle, Y. He, F. Turck, C. Vincent, F. Fornara, S. Krober, R. A. Amasino, and G. Coupland (2006)
Genes & Dev. 20, 898-912
   Abstract »    Full Text »    PDF »
EARLY IN SHORT DAYS 1 (ESD1) encodes ACTIN-RELATED PROTEIN 6 (AtARP6), a putative component of chromatin remodelling complexes that positively regulates FLC accumulation in Arabidopsis.
M. Martin-Trillo, A. Lazaro, R. S. Poethig, C. Gomez-Mena, M. A. Pineiro, J. M. Martinez-Zapater, and J. A. Jarillo (2006)
Development 133, 1241-1252
   Abstract »    Full Text »    PDF »
Characterization of the Vernalization Response in Lolium perenne by a cDNA Microarray Approach.
S. Ciannamea, J. Busscher-Lange, S. de Folter, G. C. Angenent, and R. G. H. Immink (2006)
Plant Cell Physiol. 47, 481-492
   Abstract »    Full Text »    PDF »
LHP1, the Arabidopsis homologue of HETEROCHROMATIN PROTEIN1, is required for epigenetic silencing of FLC.
J. S. Mylne, L. Barrett, F. Tessadori, S. Mesnage, L. Johnson, Y. V. Bernatavichute, S. E. Jacobsen, P. Fransz, and C. Dean (2006)
PNAS 103, 5012-5017
   Abstract »    Full Text »    PDF »
FRIGIDA-ESSENTIAL 1 interacts genetically with FRIGIDA and FRIGIDA-LIKE 1 to promote the winter-annual habit of Arabidopsis thaliana.
R. J. Schmitz, L. Hong, S. Michaels, and R. M. Amasino (2005)
Development 132, 5471-5478
   Abstract »    Full Text »    PDF »
SUPPRESSOR OF FRIGIDA3 Encodes a Nuclear ACTIN-RELATED PROTEIN6 Required for Floral Repression in Arabidopsis.
K. Choi, S. Kim, S. Y. Kim, M. Kim, Y. Hyun, H. Lee, S. Choe, S.-G. Kim, S. Michaels, and I. Lee (2005)
PLANT CELL 17, 2647-2660
   Abstract »    Full Text »    PDF »
Regulation of VRN-1 Vernalization Genes in Normal and Transgenic Polyploid Wheat.
A. Loukoianov, L. Yan, A. Blechl, A. Sanchez, and J. Dubcovsky (2005)
Plant Physiology 138, 2364-2373
   Abstract »    Full Text »    PDF »
Analysis of Flowering Pathway Integrators in Arabidopsis.
J. Moon, H. Lee, M. Kim, and I. Lee (2005)
Plant Cell Physiol. 46, 292-299
   Abstract »    Full Text »    PDF »
A DEAD Box RNA Helicase Is Essential for mRNA Export and Important for Development and Stress Responses in Arabidopsis.
Z. Gong, C.-H. Dong, H. Lee, J. Zhu, L. Xiong, D. Gong, B. Stevenson, and J.-K. Zhu (2005)
PLANT CELL 17, 256-267
   Abstract »    Full Text »    PDF »
A Mechanism Related to the Yeast Transcriptional Regulator Paf1c Is Required for Expression of the Arabidopsis FLC/MAF MADS Box Gene Family.
S. Oh, H. Zhang, P. Ludwig, and S. van Nocker (2004)
PLANT CELL 16, 2940-2953
   Abstract »    Full Text »    PDF »
Arabidopsis C-terminal domain phosphatase-like 1 and 2 are essential Ser-5-specific C-terminal domain phosphatases.
H. Koiwa, S. Hausmann, W. Y. Bang, A. Ueda, N. Kondo, A. Hiraguri, T. Fukuhara, J. D. Bahk, D.-J. Yun, R. A. Bressan, et al. (2004)
PNAS 101, 14539-14544
   Abstract »    Full Text »    PDF »
Vernalization, Competence, and the Epigenetic Memory of Winter.
R. Amasino (2004)
PLANT CELL 16, 2553-2559
   Full Text »    PDF »
Divergent Roles of a Pair of Homologous Jumonji/Zinc-Finger-Class Transcription Factor Proteins in the Regulation of Arabidopsis Flowering Time.
B. Noh, S.-H. Lee, H.-J. Kim, G. Yi, E.-A. Shin, M. Lee, K.-J. Jung, M. R. Doyle, R. M. Amasino, and Y.-S. Noh (2004)
PLANT CELL 16, 2601-2613
   Abstract »    Full Text »    PDF »
Regulation of flowering time in Arabidopsis by K homology domain proteins.
T. C. Mockler, X. Yu, D. Shalitin, D. Parikh, T. P. Michael, J. Liou, J. Huang, Z. Smith, J. M. Alonso, J. R. Ecker, et al. (2004)
PNAS 101, 12759-12764
   Abstract »    Full Text »    PDF »
Control of Arabidopsis flowering: the chill before the bloom.
I. R. Henderson and C. Dean (2004)
Development 131, 3829-3838
   Abstract »    Full Text »    PDF »
Multiple Pathways in the Decision to Flower: Enabling, Promoting, and Resetting.
P. K. Boss, R. M. Bastow, J. S. Mylne, and C. Dean (2004)
PLANT CELL 16, S18-S31
   Full Text »    PDF »
The Wheat VRN2 Gene Is a Flowering Repressor Down-Regulated by Vernalization.
L. Yan, A. Loukoianov, A. Blechl, G. Tranquilli, W. Ramakrishna, P. SanMiguel, J. L. Bennetzen, V. Echenique, and J. Dubcovsky (2004)
Science 303, 1640-1644
   Abstract »    Full Text »    PDF »
Epigenetic Regulation in the Control of Flowering.
J. MYLNE, T. GREB, C. LISTER, and C. DEAN (2004)
Cold Spring Harb Symp Quant Biol 69, 457-464
   Abstract »    PDF »
Developmental diorama.
P. Currie (2003)
Development 130, 3903-3906
   Full Text »    PDF »
PIE1, an ISWI Family Gene, Is Required for FLC Activation and Floral Repression in Arabidopsis.
Y.-S. Noh and R. M. Amasino (2003)
PLANT CELL 15, 1671-1682
   Abstract »    Full Text »    PDF »
Genetic Analysis of Early Flowering Mutants in Arabidopsis Defines a Class of Pleiotropic Developmental Regulator Required for Expression of the Flowering-Time Switch Flowering Locus C.
H. Zhang, C. Ransom, P. Ludwig, and S. van Nocker (2003)
Genetics 164, 347-358
   Abstract »    Full Text »    PDF »
Analysis of the Arabidopsis MADS AFFECTING FLOWERING Gene Family: MAF2 Prevents Vernalization by Short Periods of Cold.
O. J. Ratcliffe, R. W. Kumimoto, B. J. Wong, and J. L. Riechmann (2003)
PLANT CELL 15, 1159-1169
   Abstract »    Full Text »    PDF »
Arabidopsis Research Heats Up in Seville.
D. Alabadi, A. Devoto, and N. A. Eckardt (2002)
PLANT CELL 14, 1987-1994
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882