Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 297 (5579): 256-259

Copyright © 2002 by the American Association for the Advancement of Science

Leg Patterning Driven by Proximal-Distal Interactions and EGFR Signaling

M. I. Galindo, S. A. Bishop, S. Greig, J. P. Couso*

wingless and decapentaplegic signaling establishes the proximal-distal axis of Drosophila legs by activating the expression of genes such as Distalless and dachshund in broad proximal-distal domains during early leg development. However, here we show that wingless and decapentaplegic are not required throughout all of proximal-distal development. The tarsus, which has been proposed to be an ancestral structure, is instead defined by the activity of Distalless, dachshund, and a distal gradient of epidermal growth factor receptor (EGFR)-Ras signaling. Our results uncover a mechanism for appendage patterning directed by genes expressed in proximal-distal domains and possibly conserved in other arthropods and vertebrates.

School of Biological Sciences, University of Sussex, Falmer, Brighton BN1 9QG, UK.
*   To whom correspondence should be addressed. E-mail: J.P.Couso{at}biols.susx.ac.uk


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Planar cell polarity controls directional Notch signaling in the Drosophila leg.
A. Capilla, R. Johnson, M. Daniels, M. Benavente, S. J. Bray, and M. I. Galindo (2012)
Development 139, 2584-2593
   Abstract »    Full Text »    PDF »
Extent With Modification: Leg Patterning in the Beetle Tribolium castaneum and the Evolution of Serial Homologs.
D. R. Angelini, F. W. Smith, and E. L. Jockusch (2012)
g3 2, 235-248
   Abstract »    Full Text »    PDF »
Patterning of the Adult Mandibulate Mouthparts in the Red Flour Beetle, Tribolium castaneum.
D. R. Angelini, F. W. Smith, A. C. Aspiras, M. Kikuchi, and E. L. Jockusch (2012)
Genetics 190, 639-654
   Abstract »    Full Text »    PDF »
Proximodistal Patterning in the Drosophila Leg: Models and Mutations.
N. E. Baker (2011)
Genetics 187, 1003-1010
   Abstract »    Full Text »    PDF »
Functional convergence of signalling by GPI-anchored and anchorless forms of a salamander protein implicated in limb regeneration.
R. A. Blassberg, A. Garza-Garcia, A. Janmohamed, P. B. Gates, and J. P. Brockes (2011)
J. Cell Sci. 124, 47-56
   Abstract »    Full Text »    PDF »
The Tbx20 homologs midline and H15 specify ventral fate in the Drosophila melanogaster leg.
P. C. Svendsen, A. Formaz-Preston, S. M. Leal, and W. J. Brook (2009)
Development 136, 2689-2693
   Abstract »    Full Text »    PDF »
Regulation of leg size and shape by the Dachsous/Fat signalling pathway during regeneration.
T. Bando, T. Mito, Y. Maeda, T. Nakamura, F. Ito, T. Watanabe, H. Ohuchi, and S. Noji (2009)
Development 136, 2235-2245
   Abstract »    Full Text »    PDF »
Drosophila ptip is essential for anterior/posterior patterning in development and interacts with the PcG and trxG pathways.
M. Fang, H. Ren, J. Liu, K. M. Cadigan, S. R. Patel, and G. R. Dressler (2009)
Development 136, 1929-1938
   Abstract »    Full Text »    PDF »
The Two-Spotted Cricket Gryllus bimaculatus: An Emerging Model for Developmental and Regeneration Studies.
T. Mito and S. Noji (2008)
Cold Spring Harb Protoc 2008, pdb.emo110
   Abstract »    Full Text »    PDF »
Logic of Wg and Dpp induction of distal and medial fates in the Drosophila leg.
C. Estella and R. S. Mann (2008)
Development 135, 627-636
   Abstract »    Full Text »    PDF »
A wave of EGFR signaling determines cell alignment and intercalation in the Drosophila tracheal placode.
M. Nishimura, Y. Inoue, and S. Hayashi (2007)
Development 134, 4273-4282
   Abstract »    Full Text »    PDF »
New Candidate Genes for Sex-Comb Divergence Between Drosophila mauritiana and Drosophila simulans.
R. M. Graze, O. Barmina, D. Tufts, E. Naderi, K. L. Harmon, M. Persianinova, and S. V. Nuzhdin (2007)
Genetics 176, 2561-2576
   Abstract »    Full Text »    PDF »
A Gain-of-Function Screen Identifying Genes Required for Vein Formation in the Drosophila melanogaster Wing.
C. Molnar, A. Lopez-Varea, R. Hernandez, and J. F. de Celis (2006)
Genetics 174, 1635-1659
   Abstract »    Full Text »    PDF »
Genetic Interactions Among scribbler, Atrophin and groucho in Drosophila Uncover Links in Transcriptional Repression.
A. Wehn and G. Campbell (2006)
Genetics 173, 849-861
   Abstract »    Full Text »    PDF »
jing Is Required for Wing Development and to Establish the Proximo-Distal Axis of the Leg in Drosophila melanogaster.
J. Culi, P. Aroca, J. Modolell, and R. S. Mann (2006)
Genetics 173, 255-266
   Abstract »    Full Text »    PDF »
The Evolution and Development of Novel Traits, or How Beetles Got Their Horns.
A. P. Moczek (2005)
BioScience 55, 937-951
   Abstract »    Full Text »    PDF »
Functional analyses of tiptop and Antennapedia in the embryonic development of Oncopeltus fasciatus suggests an evolutionary pathway from ground state to insect legs.
S. W. Herke, N. V. Serio, and B. T. Rogers (2005)
Development 132, 27-34
   Abstract »    Full Text »    PDF »
Nucleotide Variation in the Egfr Locus of Drosophila melanogaster.
A. Palsson, A. Rouse, R. Riley-Berger, I. Dworkin, and G. Gibson (2004)
Genetics 167, 1199-1212
   Abstract »    Full Text »    PDF »
Chip-mediated partnerships of the homeodomain proteins Bar and Aristaless with the LIM-HOM proteins Apterous and Lim1 regulate distal leg development.
J. I. Pueyo and J. P. Couso (2004)
Development 131, 3107-3120
   Abstract »    Full Text »    PDF »
Multiple signaling pathways and a selector protein sequentially regulate Drosophila wing development.
S.-J. Yan, Y. Gu, W. X. Li, and R. J. Fleming (2004)
Development 131, 285-298
   Abstract »    Full Text »    PDF »
Bowl is required downstream of Notch for elaboration of distal limb patterning.
J. M. de Celis Ibeas and S. J. Bray (2003)
Development 130, 5943-5952
   Abstract »    Full Text »    PDF »
The Novel Plant Homeodomain Protein Rhinoceros Antagonizes Ras Signaling in the Drosophila Eye.
M. G. Voas and I. Rebay (2003)
Genetics 165, 1993-2006
   Abstract »    Full Text »    PDF »
Genotype to Phenotype: Physiological Control of Trait Size and Scaling in Insects.
D. J. Emlen and C. E. Allen (2003)
Integr. Comp. Biol. 43, 617-634
   Abstract »    Full Text »    PDF »
Functional Dissection of Eyes absent Reveals New Modes of Regulation within the Retinal Determination Gene Network.
S. J. Silver, E. L. Davies, L. Doyon, and I. Rebay (2003)
Mol. Cell. Biol. 23, 5989-5999
   Abstract »    Full Text »    PDF »
defective proventriculus is required for pattern formation along the proximodistal axis, cell proliferation and formation of veins in the Drosophila wing.
S. Kolzer, B. Fuss, M. Hoch, and T. Klein (2003)
Development 130, 4135-4147
   Abstract »    Full Text »    PDF »
Splits ends is a tissue/promoter specific regulator of Wingless signaling.
H. V. Lin, D. B. Doroquez, S. Cho, F. Chen, I. Rebay, and K. M. Cadigan (2003)
Development 130, 3125-3135
   Abstract »    Full Text »    PDF »
distal antenna and distal antenna related encode nuclear proteins containing pipsqueak motifs involved in antenna development in Drosophila.
B. S. Emerald, J. Curtiss, M. Mlodzik, and S. M. Cohen (2003)
Development 130, 1171-1180
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882