Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 297 (5580): 409-412

Copyright © 2002 by the American Association for the Advancement of Science

Integrin-Mediated Long-Term B Cell Retention in the Splenic Marginal Zone

Theresa T. Lu, Jason G. Cyster*

The mechanisms that control localization of marginal zone (MZ) B cells are poorly understood. Here we show that MZ B cells express elevated levels of the integrins LFA-1 (alpha Lbeta 2) and alpha 4beta 1 and that they bind to the ligands ICAM-1 and VCAM-1. These ligands are expressed within the MZ in a lymphotoxin-dependent manner. Combined inhibition of LFA-1 and alpha 4beta 1 causes a rapid and selective release of B cells from the MZ. Furthermore, lipopolysaccharide-triggered MZ B cell relocalization involves down-regulation of integrin-mediated adhesion. These studies identify key requirements for MZ B cell localization and establish a role for integrins in peripheral lymphoid tissue compartmentalization.

Howard Hughes Medical Institute, Department of Microbiology and Immunology, and Division of Pediatric Immunology and Rheumatology, University of California, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
*   To whom correspondence should be addressed. E-mail: cyster{at}

IRF4 controls the positioning of mature B cells in the lymphoid microenvironments by regulating NOTCH2 expression and activity.
G. Simonetti, A. Carette, K. Silva, H. Wang, N. S. De Silva, N. Heise, C. W. Siebel, M. J. Shlomchik, and U. Klein (2013)
J. Exp. Med. 210, 2887-2902
   Abstract »    Full Text »    PDF »
The Tumor Promoter and NF-{kappa}B Modulator Bcl-3 Regulates Splenic B Cell Development.
X. Zhang, A. Paun, E. Claudio, H. Wang, and U. Siebenlist (2013)
J. Immunol. 191, 5984-5992
   Abstract »    Full Text »    PDF »
Natalizumab treatment decreases serum IgM and IgG levels in multiple sclerosis patients.
R. C. Selter, V. Biberacher, V. Grummel, D. Buck, C. Eienbroker, W. H. Oertel, A. Berthele, B. Tackenberg, and B. Hemmer (2013)
Multiple Sclerosis Journal 19, 1454-1461
   Abstract »    Full Text »    PDF »
T Cell-Dependent IgM Memory B Cells Generated during Bacterial Infection Are Required for IgG Responses to Antigen Challenge.
J. L. Yates, R. Racine, K. M. McBride, and G. M. Winslow (2013)
J. Immunol. 191, 1240-1249
   Abstract »    Full Text »    PDF »
Extracellular matrix of secondary lymphoid organs impacts on B-cell fate and survival.
J. Song, Z. Lokmic, T. Lammermann, J. Rolf, C. Wu, X. Zhang, R. Hallmann, M.-J. Hannocks, N. Horn, M. A. Ruegg, et al. (2013)
PNAS 110, E2915-E2924
   Abstract »    Full Text »    PDF »
Low-affinity B cells transport viral particles from the lung to the spleen to initiate antibody responses.
J. Bessa, F. Zabel, A. Link, A. Jegerlehner, H. J. Hinton, N. Schmitz, M. Bauer, T. M. Kundig, P. Saudan, and M. F. Bachmann (2012)
PNAS 109, 20566-20571
   Abstract »    Full Text »    PDF »
Molecular Biology, Epidemiology, and Pathogenesis of Progressive Multifocal Leukoencephalopathy, the JC Virus-Induced Demyelinating Disease of the Human Brain.
M. W. Ferenczy, L. J. Marshall, C. D. S. Nelson, W. J. Atwood, A. Nath, K. Khalili, and E. O. Major (2012)
Clin. Microbiol. Rev. 25, 471-506
   Abstract »    Full Text »    PDF »
Marginal Zone B Cells Regulate Antigen-Specific T Cell Responses during Infection.
R. Bankoti, K. Gupta, A. Levchenko, and S. Stager (2012)
J. Immunol. 188, 3961-3971
   Abstract »    Full Text »    PDF »
B cell-intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice.
M. Recher, S. O. Burns, M. A. de la Fuente, S. Volpi, C. Dahlberg, J. E. Walter, K. Moffitt, D. Mathew, N. Honke, P. A. Lang, et al. (2012)
Blood 119, 2819-2828
   Abstract »    Full Text »    PDF »
Innate Response Activator B Cells Protect Against Microbial Sepsis.
P. J. Rauch, A. Chudnovskiy, C. S. Robbins, G. F. Weber, M. Etzrodt, I. Hilgendorf, E. Tiglao, J.-L. Figueiredo, Y. Iwamoto, I. Theurl, et al. (2012)
Science 335, 597-601
   Abstract »    Full Text »    PDF »
Extramedullary Hematopoiesis Generates Ly-6Chigh Monocytes That Infiltrate Atherosclerotic Lesions.
C. S. Robbins, A. Chudnovskiy, P. J. Rauch, J.-L. Figueiredo, Y. Iwamoto, R. Gorbatov, M. Etzrodt, G. F. Weber, T. Ueno, N. van Rooijen, et al. (2012)
Circulation 125, 364-374
   Abstract »    Full Text »    PDF »
The CXCR7 chemokine receptor promotes B-cell retention in the splenic marginal zone and serves as a sink for CXCL12.
H. Wang, N. Beaty, S. Chen, C.-F. Qi, M. Masiuk, D.-M. Shin, and H. C. Morse III (2012)
Blood 119, 465-468
   Abstract »    Full Text »    PDF »
Cannabinoid Receptor 2 Is Critical for the Homing and Retention of Marginal Zone B Lineage Cells and for Efficient T-Independent Immune Responses.
S. Basu, A. Ray, and B. N. Dittel (2011)
J. Immunol. 187, 5720-5732
   Abstract »    Full Text »    PDF »
Follicular dendritic cells help establish follicle identity and promote B cell retention in germinal centers.
X. Wang, B. Cho, K. Suzuki, Y. Xu, J. A. Green, J. An, and J. G. Cyster (2011)
J. Exp. Med. 208, 2497-2510
   Abstract »    Full Text »    PDF »
Cannabinoid receptor 2 positions and retains marginal zone B cells within the splenic marginal zone.
J. R. Muppidi, T. I. Arnon, Y. Bronevetsky, N. Veerapen, M. Tanaka, G. S. Besra, and J. G. Cyster (2011)
J. Exp. Med. 208, 1941-1948
   Abstract »    Full Text »    PDF »
The Actin-Bundling Protein L-Plastin Is Essential for Marginal Zone B Cell Development.
E. M. Todd, L. E. Deady, and S. C. Morley (2011)
J. Immunol. 187, 3015-3025
   Abstract »    Full Text »    PDF »
B cells enhance early innate immune responses during bacterial sepsis.
K. M. Kelly-Scumpia, P. O. Scumpia, J. S. Weinstein, M. J. Delano, A. G. Cuenca, D. C. Nacionales, J. L. Wynn, P. Y. Lee, Y. Kumagai, P. A. Efron, et al. (2011)
J. Exp. Med. 208, 1673-1682
   Abstract »    Full Text »    PDF »
Universal expression and dual function of the atypical chemokine receptor D6 on innate-like B cells in mice.
C. A. H. Hansell, C. Schiering, R. Kinstrie, L. Ford, Y. Bordon, I. B. McInnes, C. S. Goodyear, and R. J. B. Nibbs (2011)
Blood 117, 5413-5424
   Abstract »    Full Text »    PDF »
Programming of marginal zone B-cell fate by basic Kruppel-like factor (BKLF/KLF3).
G. Turchinovich, T. T. Vu, F. Frommer, J. Kranich, S. Schmid, M. Alles, J.-B. Loubert, J.-P. Goulet, U. Zimber-Strobl, P. Schneider, et al. (2011)
Blood 117, 3780-3792
   Abstract »    Full Text »    PDF »
Kruppel-like factor 2 (KLF2) regulates B-cell reactivity, subset differentiation, and trafficking molecule expression.
G. T. Hart, X. Wang, K. A. Hogquist, and S. C. Jameson (2011)
PNAS 108, 716-721
   Abstract »    Full Text »    PDF »
Talin1 is required for integrin-dependent B lymphocyte homing to lymph nodes and the bone marrow but not for follicular B-cell maturation in the spleen.
E. Manevich-Mendelson, V. Grabovsky, S. W. Feigelson, G. Cinamon, Y. Gore, G. Goverse, S. J. Monkley, R. Margalit, D. Melamed, R. E. Mebius, et al. (2010)
Blood 116, 5907-5918
   Abstract »    Full Text »    PDF »
SHEP1 partners with CasL to promote marginal zone B-cell maturation.
C. D. Browne, M. M. Hoefer, S. K. Chintalapati, M. H. Cato, Y. Wallez, D. V. Ostertag, E. B. Pasquale, and R. C. Rickert (2010)
PNAS 107, 18944-18949
   Abstract »    Full Text »    PDF »
T-Cell-Independent Immune Responses Do Not Require Cxc Ligand 13-Mediated B1 Cell Migration.
M. J. Colombo, G. Sun, and K. R. Alugupalli (2010)
Infect. Immun. 78, 3950-3956
   Abstract »    Full Text »    PDF »
Type I IFN enhances follicular B cell contribution to the T cell-independent antibody response.
C. L. Swanson, T. J. Wilson, P. Strauch, M. Colonna, R. Pelanda, and R. M. Torres (2010)
J. Exp. Med. 207, 1485-1500
   Abstract »    Full Text »    PDF »
Finding the right niche: B-cell migration in the early phases of T-dependent antibody responses.
J. P. Pereira, L. M. Kelly, and J. G. Cyster (2010)
Int. Immunol. 22, 413-419
   Abstract »    Full Text »    PDF »
Molecular regulators of leucocyte chemotaxis during inflammation.
C. H. Y. Wong, B. Heit, and P. Kubes (2010)
Cardiovasc Res 86, 183-191
   Abstract »    Full Text »    PDF »
gp96, an endoplasmic reticulum master chaperone for integrins and Toll-like receptors, selectively regulates early T and B lymphopoiesis.
M. Staron, Y. Yang, B. Liu, J. Li, Y. Shen, J. C. Zuniga-Pflucker, H. L. Aguila, I. Goldschneider, and Z. Li (2010)
Blood 115, 2380-2390
   Abstract »    Full Text »    PDF »
Progenitor Cell Origin Plays a Role in Fate Choices of Mature B Cells.
V. Fossati, R. Kumar, and H.-W. Snoeck (2010)
J. Immunol. 184, 1251-1260
   Abstract »    Full Text »    PDF »
Phosphoinositide 3-Kinase p110{delta} Regulates Natural Antibody Production, Marginal Zone and B-1 B Cell Function, and Autoantibody Responses.
C. A. Durand, K. Hartvigsen, L. Fogelstrand, S. Kim, S. Iritani, B. Vanhaesebroeck, J. L. Witztum, K. D. Puri, and M. R. Gold (2009)
J. Immunol. 183, 5673-5684
   Abstract »    Full Text »    PDF »
Cutting Edge: Primary and Secondary Effects of CD19 Deficiency on Cells of the Marginal Zone.
Y. You, H. Zhao, Y. Wang, and R. H. Carter (2009)
J. Immunol. 182, 7343-7347
   Abstract »    Full Text »    PDF »
Wiskott-Aldrich Syndrome Protein Is Required for Homeostasis and Function of Invariant NKT Cells.
A. Astrakhan, H. D. Ochs, and D. J. Rawlings (2009)
J. Immunol. 182, 7370-7380
   Abstract »    Full Text »    PDF »
Role of Marginal Zone B Lymphocytes in Invariant NKT Cell Activation.
E. Bialecki, C. Paget, J. Fontaine, M. Capron, F. Trottein, and C. Faveeuw (2009)
J. Immunol. 182, 6105-6113
   Abstract »    Full Text »    PDF »
Mst1 controls lymphocyte trafficking and interstitial motility within lymph nodes.
K. Katagiri, T. Katakai, Y. Ebisuno, Y. Ueda, T. Okada, and T. Kinashi (2009)
EMBO J. 28, 1319-1331
   Abstract »    Full Text »    PDF »
WASp stings mature lymphocytes.
E. Severinson (2008)
Blood 112, 3921-3922
   Full Text »    PDF »
WASP confers selective advantage for specific hematopoietic cell populations and serves a unique role in marginal zone B-cell homeostasis and function.
L. S. Westerberg, M. A. de la Fuente, F. Wermeling, H. D. Ochs, M. C. I. Karlsson, S. B. Snapper, and L. D. Notarangelo (2008)
Blood 112, 4139-4147
   Abstract »    Full Text »    PDF »
Wiskott-Aldrich syndrome protein deficiency in B cells results in impaired peripheral homeostasis.
A. Meyer-Bahlburg, S. Becker-Herman, S. Humblet-Baron, S. Khim, M. Weber, G. Bouma, A. J. Thrasher, F. D. Batista, and D. J. Rawlings (2008)
Blood 112, 4158-4169
   Abstract »    Full Text »    PDF »
Rap1b Regulates B Cell Development, Homing, and T Cell-Dependent Humoral Immunity.
H. Chu, A. Awasthi, G. C. White II, M. Chrzanowska-Wodnicka, and S. Malarkannan (2008)
J. Immunol. 181, 3373-3383
   Abstract »    Full Text »    PDF »
Endoplasmic reticulum HSP90b1 (gp96, grp94) optimizes B-cell function via chaperoning integrin and TLR but not immunoglobulin.
B. Liu and Z. Li (2008)
Blood 112, 1223-1230
   Abstract »    Full Text »    PDF »
Regulation of integrin activation through the B-cell receptor.
E. Arana, N. E. Harwood, and F. D. Batista (2008)
J. Cell Sci. 121, 2279-2286
   Abstract »    Full Text »    PDF »
Delta-like 1 is essential for the maintenance of marginal zone B cells in normal mice but not in autoimmune mice.
Y. Moriyama, C. Sekine, A. Koyanagi, N. Koyama, H. Ogata, S. Chiba, S. Hirose, K. Okumura, and H. Yagita (2008)
Int. Immunol. 20, 763-773
   Abstract »    Full Text »    PDF »
DNA Microarray Gene Expression Profile of Marginal Zone versus Follicular B Cells and Idiotype Positive Marginal Zone B Cells before and after Immunization with Streptococcus pneumoniae.
N. W. Kin, D. M. Crawford, J. Liu, T. W. Behrens, and J. F. Kearney (2008)
J. Immunol. 180, 6663-6674
   Abstract »    Full Text »    PDF »
A critical role of Rap1b in B-cell trafficking and marginal zone B-cell development.
Y. Chen, M. Yu, A. Podd, R. Wen, M. Chrzanowska-Wodnicka, G. C. White, and D. Wang (2008)
Blood 111, 4627-4636
   Abstract »    Full Text »    PDF »
TLR Agonists Promote Marginal Zone B Cell Activation and Facilitate T-Dependent IgM Responses.
A. V. Rubtsov, C. L. Swanson, S. Troy, P. Strauch, R. Pelanda, and R. M. Torres (2008)
J. Immunol. 180, 3882-3888
   Abstract »    Full Text »    PDF »
Marginal-Zone B-Cells of Nonobese Diabetic Mice Expand With Diabetes Onset, Invade the Pancreatic Lymph Nodes, and Present Autoantigen to Diabetogenic T-Cells.
E. Marino, M. Batten, J. Groom, S. Walters, D. Liuwantara, F. Mackay, and S. T. Grey (2008)
Diabetes 57, 395-404
   Abstract »    Full Text »    PDF »
Maintenance of Long-Lived Plasma Cells and Serological Memory Despite Mature and Memory B Cell Depletion during CD20 Immunotherapy in Mice.
D. J. DiLillo, Y. Hamaguchi, Y. Ueda, K. Yang, J. Uchida, K. M. Haas, G. Kelsoe, and T. F. Tedder (2008)
J. Immunol. 180, 361-371
   Abstract »    Full Text »    PDF »
Sphingosine-1 Phosphate Signaling Regulates Positioning of Dendritic Cells within the Spleen.
N. Czeloth, A. Schippers, N. Wagner, W. Muller, B. Kuster, G. Bernhardt, and R. Forster (2007)
J. Immunol. 179, 5855-5863
   Abstract »    Full Text »    PDF »
The role of ICAM-1 in endotoxin-induced acute renal failure.
X. Wu, R. Guo, Y. Wang, and P. N. Cunningham (2007)
Am J Physiol Renal Physiol 293, F1262-F1271
   Abstract »    Full Text »    PDF »
Constitutive alternative NF-{kappa}B signaling promotes marginal zone B-cell development but disrupts the marginal sinus and induces HEV-like structures in the spleen.
F. Guo, D. Weih, E. Meier, and F. Weih (2007)
Blood 110, 2381-2389
   Abstract »    Full Text »    PDF »
Serum Response Factor Contributes Selectively to Lymphocyte Development.
A. Fleige, S. Alberti, L. Grobe, U. Frischmann, R. Geffers, W. Muller, A. Nordheim, and A. Schippers (2007)
J. Biol. Chem. 282, 24320-24328
   Abstract »    Full Text »    PDF »
The Recirculating B Cell Pool Contains Two Functionally Distinct, Long-Lived, Posttransitional, Follicular B Cell Populations.
A. Cariappa, C. Boboila, S. T. Moran, H. Liu, H. N. Shi, and S. Pillai (2007)
J. Immunol. 179, 2270-2281
   Abstract »    Full Text »    PDF »
Effects of TNF-{alpha} on Leukocyte Adhesion Molecule Expressions in Cultured Human Lymphatic Endothelium.
Y. Sawa, Y. Sugimoto, T. Ueki, H. Ishikawa, A. Sato, T. Nagato, and S. Yoshida (2007)
Journal of Histochemistry & Cytochemistry 55, 721-733
   Abstract »    Full Text »    PDF »
Marginal Zone B-Cell Depletion Impairs Murine Host Defense against Borrelia burgdorferi Infection.
A. A. Belperron, C. M. Dailey, C. J. Booth, and L. K. Bockenstedt (2007)
Infect. Immun. 75, 3354-3360
   Abstract »    Full Text »    PDF »
Synergism between NF-{kappa}B1/p50 and Notch2 during the Development of Marginal Zone B Lymphocytes.
S. T. Moran, A. Cariappa, H. Liu, B. Muir, D. Sgroi, C. Boboila, and S. Pillai (2007)
J. Immunol. 179, 195-200
   Abstract »    Full Text »    PDF »
Functional characterization of natural killer cells in type I leukocyte adhesion deficiency.
R. Castriconi, A. Dondero, C. Cantoni, M. Della Chiesa, C. Prato, M. Nanni, M. Fiorini, L. Notarangelo, S. Parolini, L. Moretta, et al. (2007)
Blood 109, 4873-4881
   Abstract »    Full Text »    PDF »
Regulation of Memory Antibody Levels: The Role of Persisting Antigen versus Plasma Cell Life Span.
D. Gatto, S. W. Martin, J. Bessa, E. Pellicioli, P. Saudan, H. J. Hinton, and M. F. Bachmann (2007)
J. Immunol. 178, 67-76
   Abstract »    Full Text »    PDF »
Lysophospholipids Control Integrin-dependent Adhesion in Splenic B Cells through Gi and G12/G13 Family G-proteins but Not through Gq/G11.
S. Rieken, S. Herroeder, A. Sassmann, B. Wallenwein, A. Moers, S. Offermanns, and N. Wettschureck (2006)
J. Biol. Chem. 281, 36985-36992
   Abstract »    Full Text »    PDF »
Regulation of B1 cell migration by signals through Toll-like receptors.
S.-a. Ha, M. Tsuji, K. Suzuki, B. Meek, N. Yasuda, T. Kaisho, and S. Fagarasan (2006)
J. Exp. Med. 203, 2541-2550
   Abstract »    Full Text »    PDF »
Elimination of chronic viral infection by blocking CD27 signaling.
M. Matter, B. Odermatt, H. Yagita, J.-M. Nuoffer, and A. F. Ochsenbein (2006)
J. Exp. Med. 203, 2145-2155
   Abstract »    Full Text »    PDF »
G12/G13 Family G Proteins Regulate Marginal Zone B Cell Maturation, Migration, and Polarization.
S. Rieken, A. Sassmann, S. Herroeder, B. Wallenwein, A. Moers, S. Offermanns, and N. Wettschureck (2006)
J. Immunol. 177, 2985-2993
   Abstract »    Full Text »    PDF »
B Cell Induction of IL-13 Expression in NK Cells: Role of CD244 and SLAM-Associated Protein.
N. Gao, P. Schwartzberg, J. A. Wilder, B. R. Blazar, and D. Yuan (2006)
J. Immunol. 176, 2758-2764
   Abstract »    Full Text »    PDF »
Multiple eicosanoid-activated nonselective cation channels regulate B-lymphocyte adhesion to integrin ligands.
X. Liu, P. Zhu, and B. D. Freedman (2006)
Am J Physiol Cell Physiol 290, C873-C882
   Abstract »    Full Text »    PDF »
B-cell activation by membrane-bound antigens is facilitated by the interaction of VLA-4 with VCAM-1.
Y. R. Carrasco and F. D. Batista (2006)
EMBO J. 25, 889-899
   Abstract »    Full Text »    PDF »
Epstein-Barr-Virus-Encoded LMP2A Induces Primary Epithelial Cell Migration and Invasion: Possible Role in Nasopharyngeal Carcinoma Metastasis.
D. M. Pegtel, A. Subramanian, T.-S. Sheen, C.-H. Tsai, T. R. Golub, and D. A. Thorley-Lawson (2005)
J. Virol. 79, 15430-15442
   Abstract »    Full Text »    PDF »
CXCR5-Dependent Seeding of Follicular Niches by B and Th Cells Augments Antiviral B Cell Responses.
T. Junt, K. Fink, R. Forster, B. Senn, M. Lipp, M. Muramatsu, R. M. Zinkernagel, B. Ludewig, and H. Hengartner (2005)
J. Immunol. 175, 7109-7116
   Abstract »    Full Text »    PDF »
Staphylococcal Protein A Deletes B-1a and Marginal Zone B Lymphocytes Expressing Human Immunoglobulins: An Immune Evasion Mechanism.
M. Viau, N. S. Longo, P. E. Lipsky, and M. Zouali (2005)
J. Immunol. 175, 7719-7727
   Abstract »    Full Text »    PDF »
Characterization of marginal zone B cell precursors.
B. Srivastava, W. J. Quinn III, K. Hazard, J. Erikson, and D. Allman (2005)
J. Exp. Med. 202, 1225-1234
   Abstract »    Full Text »    PDF »
Crk-Associated Substrate Lymphocyte Type Is Required for Lymphocyte Trafficking and Marginal Zone B Cell Maintenance.
S. Seo, T. Asai, T. Saito, T. Suzuki, Y. Morishita, T. Nakamoto, M. Ichikawa, G. Yamamoto, M. Kawazu, T. Yamagata, et al. (2005)
J. Immunol. 175, 3492-3501
   Abstract »    Full Text »    PDF »
Sphingosine 1-phosphate receptor agonist FTY720-phosphate causes marginal zone B cell displacement.
K. A. Vora, E. Nichols, G. Porter, Y. Cui, C. A. Keohane, R. Hajdu, J. Hale, W. Neway, D. Zaller, and S. Mandala (2005)
J. Leukoc. Biol. 78, 471-480
   Abstract »    Full Text »    PDF »
Fc{gamma}RIIIB stimulation promotes {beta}1 integrin activation in human neutrophils.
A. Ortiz-Stern and C. Rosales (2005)
J. Leukoc. Biol. 77, 787-799
   Abstract »    Full Text »    PDF »
Infection-Induced Marginal Zone B Cell Production of Borrelia hermsii-Specific Antibody Is Impaired in the Absence of CD1d.
A. A. Belperron, C. M. Dailey, and L. K. Bockenstedt (2005)
J. Immunol. 174, 5681-5686
   Abstract »    Full Text »    PDF »
B Cell Hyperresponsiveness and Expansion of Mature Follicular B Cells but Not of Marginal Zone B Cells in NFATc2/c3 Double-Deficient Mice.
D. N. Samanta, A. Palmetshofer, D. Marinkovic, T. Wirth, E. Serfling, and L. Nitschke (2005)
J. Immunol. 174, 4797-4802
   Abstract »    Full Text »    PDF »
The Enlarged Population of Marginal Zone/CD1dhigh B Lymphocytes in Nonobese Diabetic Mice Maps to Diabetes Susceptibility Region Idd11.
J. Rolf, V. Motta, N. Duarte, M. Lundholm, E. Berntman, M.-L. Bergman, L. Sorokin, S. L. Cardell, and D. Holmberg (2005)
J. Immunol. 174, 4821-4827
   Abstract »    Full Text »    PDF »
Analysis of Marginal Zone B Cell Development in the Mouse with Limited B Cell Diversity: Role of the Antigen Receptor Signals in the Recruitment of B Cells to the Marginal Zone.
N. Kanayama, M. Cascalho, and H. Ohmori (2005)
J. Immunol. 174, 1438-1445
   Abstract »    Full Text »    PDF »
Wiskott-Aldrich syndrome protein deficiency leads to reduced B-cell adhesion, migration, and homing, and a delayed humoral immune response.
L. Westerberg, M. Larsson, S. J. Hardy, C. Fernandez, A. J. Thrasher, and E. Severinson (2005)
Blood 105, 1144-1152
   Abstract »    Full Text »    PDF »
Importance of Cellular Microenvironment and Circulatory Dynamics in B Cell Immunotherapy.
Q. Gong, Q. Ou, S. Ye, W. P. Lee, J. Cornelius, L. Diehl, W. Y. Lin, Z. Hu, Y. Lu, Y. Chen, et al. (2005)
J. Immunol. 174, 817-826
   Abstract »    Full Text »    PDF »
The Sphingosine-1-Phosphate (S1P) Lysophospholipid Receptor S1P3 Regulates MAdCAM-1+ Endothelial Cells in Splenic Marginal Sinus Organization.
I. Girkontaite, V. Sakk, M. Wagner, T. Borggrefe, K. Tedford, J. Chun, and K.-D. Fischer (2004)
J. Exp. Med. 200, 1491-1501
   Abstract »    Full Text »    PDF »
B cell signalling as therapeutic target.
R H Carter (2004)
Ann Rheum Dis 63, ii65-ii66
   Full Text »    PDF »
Rapid Response of Marginal Zone B Cells to Viral Particles.
D. Gatto, C. Ruedl, B. Odermatt, and M. F. Bachmann (2004)
J. Immunol. 173, 4308-4316
   Abstract »    Full Text »    PDF »
LFA-1 on CD4+ T Cells Is Required for Optimal Antigen-Dependent Activation In Vivo.
S. Kandula and C. Abraham (2004)
J. Immunol. 173, 4443-4451
   Abstract »    Full Text »    PDF »
Marginal zone B cells transport and deposit IgM-containing immune complexes onto follicular dendritic cells.
A. R. Ferguson, M. E. Youd, and R. B. Corley (2004)
Int. Immunol. 16, 1411-1422
   Abstract »    Full Text »    PDF »
Analyses of the In Vivo Trafficking of Stoichiometric Doses of an Anti-Complement Receptor 1/2 Monoclonal Antibody Infused Intravenously in Mice.
E. C. Whipple, R. S. Shanahan, A. H. Ditto, R. P. Taylor, and M. A. Lindorfer (2004)
J. Immunol. 173, 2297-2306
   Abstract »    Full Text »    PDF »
Staphylococcal toxin induced preferential and prolonged in vivo deletion of innate-like B lymphocytes.
C. S. Goodyear and G. J. Silverman (2004)
PNAS 101, 11392-11397
   Abstract »    Full Text »    PDF »
Antigen-Specific Lymphocyte Sequestration in Lymphoid Organs: Lack of Essential Roles for {alpha}L and {alpha}4 Integrin-Dependent Adhesion or G{alpha}i Protein-Coupled Receptor Signaling.
C. N. Arnold, E. C. Butcher, and D. J. Campbell (2004)
J. Immunol. 173, 866-873
   Abstract »    Full Text »    PDF »
B Cell Positive Selection: Road Map to the Primary Repertoire?.
M. P. Cancro and J. F. Kearney (2004)
J. Immunol. 173, 15-19
   Abstract »    Full Text »    PDF »
Separation of the New Zealand Black Genetic Contribution to Lupus from New Zealand Black Determined Expansions of Marginal Zone B and B1a Cells.
S. Atencio, H. Amano, S. Izui, and B. L. Kotzin (2004)
J. Immunol. 172, 4159-4166
   Abstract »    Full Text »    PDF »
The Selection of Marginal Zone B Cells Differs from That of B-1a Cells.
K. Kretschmer, A. Jungebloud, J. Stopkowicz, T. Kleinke, R. Hoffmann, and S. Weiss (2003)
J. Immunol. 171, 6495-6501
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882