Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 297 (5581): 602-606

Copyright © 2002 by the American Association for the Advancement of Science

ATR Homolog Mec1 Promotes Fork Progression, Thus Averting Breaks in Replication Slow Zones

Rita S. Cha, Nancy Kleckner*

Budding yeast Mec1, homolog of mammalian ATR, is an essential protein that mediates S-phase checkpoint responses and meiotic recombination. Elimination of Mec1 function leads to genomewide fork stalling followed by chromosome breakage. Breaks do not result from stochastic collapse of stalled forks or other incidental lesions; instead, they occur in specific regions of the genome during a G2 chromosomal transition. Break regions are found to be genetically encoded replication slow zones (RSZs), a newly discovered yeast chromosomal determinant. Thus, Mec1 has important functions in normal S phase and the genome instability of mec1 (and, analogously, ATR-/-) mutants stems from defects in these basic roles.

Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
*   To whom correspondence should be addressed. E-mail: kleckner{at}

The Precarious Prokaryotic Chromosome.
A. Kuzminov (2014)
J. Bacteriol. 196, 1793-1806
   Abstract »    Full Text »    PDF »
Human single-stranded DNA binding protein 1 (hSSB1/NAPB2) is required for the stability and repair of stalled replication forks.
E. Bolderson, E. Petermann, L. Croft, A. Suraweera, R. K. Pandita, T. K. Pandita, T. Helleday, K. K. Khanna, and D. J. Richard (2014)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Replicating Damaged DNA in Eukaryotes.
N. Chatterjee and W. Siede (2013)
Cold Spring Harb Perspect Biol 5, a019836
   Abstract »    Full Text »    PDF »
Molecular Basis of the Essential S Phase Function of the Rad53 Checkpoint Kinase.
N. C. Hoch, E. S.- W. Chen, R. Buckland, S.-C. Wang, A. Fazio, A. Hammet, A. Pellicioli, A. Chabes, M.-D. Tsai, and J. Heierhorst (2013)
Mol. Cell. Biol. 33, 3202-3213
   Abstract »    Full Text »    PDF »
Three Distinct Modes of Mec1/ATR and Tel1/ATM Activation Illustrate Differential Checkpoint Targeting during Budding Yeast Early Meiosis.
Y.-H. Cheng, C.-N. Chuang, H.-J. Shen, F.-M. Lin, and T.-F. Wang (2013)
Mol. Cell. Biol. 33, 3365-3376
   Abstract »    Full Text »    PDF »
Gene Copy-Number Variation in Haploid and Diploid Strains of the Yeast Saccharomyces cerevisiae.
H. Zhang, A. F. B. Zeidler, W. Song, C. M. Puccia, E. Malc, P. W. Greenwell, P. A. Mieczkowski, T. D. Petes, and J. L. Argueso (2013)
Genetics 193, 785-801
   Abstract »    Full Text »    PDF »
Rev3, the catalytic subunit of Pol{zeta}, is required for maintaining fragile site stability in human cells.
A. Bhat, P. L. Andersen, Z. Qin, and W. Xiao (2013)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
Four pillars of the S-phase checkpoint.
L. Zou (2013)
Genes & Dev. 27, 227-233
   Abstract »    Full Text »    PDF »
G1/S and G2/M Cyclin-Dependent Kinase Activities Commit Cells to Death in the Absence of the S-Phase Checkpoint.
N. Manfrini, E. Gobbini, V. Baldo, C. Trovesi, G. Lucchini, and M. P. Longhese (2012)
Mol. Cell. Biol. 32, 4971-4985
   Abstract »    Full Text »    PDF »
Genome Rearrangements Caused by Depletion of Essential DNA Replication Proteins in Saccharomyces cerevisiae.
E. Cheng, J. A. Vaisica, J. Ou, A. Baryshnikova, Y. Lu, F. P. Roth, and G. W. Brown (2012)
Genetics 192, 147-160
   Abstract »    Full Text »    PDF »
Inhibition of ATR-Dependent Signaling by Protoapigenone and Its Derivative Sensitizes Cancer Cells to Interstrand Cross-link-Generating Agents In Vitro and In Vivo.
H.-C. Wang, A. Y.-L. Lee, W.-C. Chou, C.-C. Wu, C.-N. Tseng, K. Y.-T. Liu, W.-L. Lin, F.-R. Chang, D.-W. Chuang, A. Hunyadi, et al. (2012)
Mol. Cancer Ther. 11, 1443-1453
   Abstract »    Full Text »    PDF »
Progesterone and DNA Damage Encourage Uterine Cell Proliferation and Decidualization through Up-regulating Ribonucleotide Reductase 2 Expression during Early Pregnancy in Mice.
W. Lei, X.-H. Feng, W.-B. Deng, H. Ni, Z.-R. Zhang, B. Jia, X.-L. Yang, T.-S. Wang, J.-L. Liu, R.-W. Su, et al. (2012)
J. Biol. Chem. 287, 15174-15192
   Abstract »    Full Text »    PDF »
Altered Replication in Human Cells Promotes DMPK (CTG)n {middle dot} (CAG)n Repeat Instability.
G. Liu, X. Chen, Y. Gao, T. Lewis, J. Barthelemy, and M. Leffak (2012)
Mol. Cell. Biol. 32, 1618-1632
   Abstract »    Full Text »    PDF »
The DNA translocase activity of FANCM protects stalled replication forks.
A. N. Blackford, R. A. Schwab, J. Nieminuszczy, A. J. Deans, S. C. West, and W. Niedzwiedz (2012)
Hum. Mol. Genet. 21, 2005-2016
   Abstract »    Full Text »    PDF »
The Recombinases DMC1 and RAD51 Are Functionally and Spatially Separated during Meiosis in Arabidopsis.
M.-T. Kurzbauer, C. Uanschou, D. Chen, and P. Schlogelhofer (2012)
PLANT CELL 24, 2058-2070
   Abstract »    Full Text »    PDF »
Telomeric Allelic Imbalance Indicates Defective DNA Repair and Sensitivity to DNA-Damaging Agents.
N. J. Birkbak, Z. C. Wang, J.-Y. Kim, A. C. Eklund, Q. Li, R. Tian, C. Bowman-Colin, Y. Li, A. Greene-Colozzi, J. D. Iglehart, et al. (2012)
Cancer Discovery 2, 366-375
   Abstract »    Full Text »    PDF »
Repeat expansion in the budding yeast ribosomal DNA can occur independently of the canonical homologous recombination machinery.
J. Houseley and D. Tollervey (2011)
Nucleic Acids Res. 39, 8778-8791
   Abstract »    Full Text »    PDF »
Replication Stress-Induced Chromosome Breakage Is Correlated with Replication Fork Progression and Is Preceded by Single-Stranded DNA Formation.
W. Feng, S. C. Di Rienzi, M. K. Raghuraman, B. J. Brewer, and R. Sclafani (2011)
g3 1, 327-335
   Abstract »    Full Text »    PDF »
Regulation of fragile sites expression in budding yeast by MEC1, RRM3 and hydroxyurea.
N. Hashash, A. L. Johnson, and R. S. Cha (2011)
J. Cell Sci. 124, 181-185
   Abstract »    Full Text »    PDF »
Combining ATR Suppression with Oncogenic Ras Synergistically Increases Genomic Instability, Causing Synthetic Lethality or Tumorigenesis in a Dosage-Dependent Manner.
O. Gilad, B. Y. Nabet, R. L. Ragland, D. W. Schoppy, K. D. Smith, A. C. Durham, and E. J. Brown (2010)
Cancer Res. 70, 9693-9702
   Abstract »    Full Text »    PDF »
Chromosome rearrangements and aneuploidy in yeast strains lacking both Tel1p and Mec1p reflect deficiencies in two different mechanisms.
J. L. McCulley and T. D. Petes (2010)
PNAS 107, 11465-11470
   Abstract »    Full Text »    PDF »
Alterations in DNA Replication and Histone Levels Promote Histone Gene Amplification in Saccharomyces cerevisiae.
D. E. Libuda and F. Winston (2010)
Genetics 184, 985-997
   Abstract »    Full Text »    PDF »
ATR suppresses telomere fragility and recombination but is dispensable for elongation of short telomeres by telomerase.
C. J. McNees, A. M. Tejera, P. Martinez, M. Murga, F. Mulero, O. Fernandez-Capetillo, and M. A. Blasco (2010)
J. Cell Biol. 188, 639-652
   Abstract »    Full Text »    PDF »
Elevated dNTP levels suppress hyper-recombination in Saccharomyces cerevisiae S-phase checkpoint mutants.
M. Fasullo, O. Tsaponina, M. Sun, and A. Chabes (2010)
Nucleic Acids Res. 38, 1195-1203
   Abstract »    Full Text »    PDF »
Leaping forks at inverted repeats.
D. Branzei and M. Foiani (2010)
Genes & Dev. 24, 5-9
   Abstract »    Full Text »    PDF »
Single molecule measurement of the "speed limit" of DNA polymerase.
J. J. Schwartz and S. R. Quake (2009)
PNAS 106, 20294-20299
   Abstract »    Full Text »    PDF »
Mammalian Rif1 contributes to replication stress survival and homology-directed repair.
S. B.C. Buonomo, Y. Wu, D. Ferguson, and T. de Lange (2009)
J. Cell Biol. 187, 385-398
   Abstract »    Full Text »    PDF »
Fbh1 Limits Rad51-Dependent Recombination at Blocked Replication Forks.
A. Lorenz, F. Osman, V. Folkyte, S. Sofueva, and M. C. Whitby (2009)
Mol. Cell. Biol. 29, 4742-4756
   Abstract »    Full Text »    PDF »
Essential global role of CDC14 in DNA synthesis revealed by chromosome underreplication unrecognized by checkpoints in cdc14 mutants.
S. Dulev, C. de Renty, R. Mehta, I. Minkov, E. Schwob, and A. Strunnikov (2009)
PNAS 106, 14466-14471
   Abstract »    Full Text »    PDF »
Retrotransposon overdose and genome integrity.
L. Z. Scheifele, G. J. Cost, M. L. Zupancic, E. M. Caputo, and J. D. Boeke (2009)
PNAS 106, 13927-13932
   Abstract »    Full Text »    PDF »
Rad52 recruitment is DNA replication independent and regulated by Cdc28 and the Mec1 kinase.
J. H. Barlow and R. Rothstein (2009)
EMBO J. 28, 1121-1130
   Abstract »    Full Text »    PDF »
The MRX complex stabilizes the replisome independently of the S phase checkpoint during replication stress.
M. Tittel-Elmer, C. Alabert, P. Pasero, and J. A. Cobb (2009)
EMBO J. 28, 1142-1156
   Abstract »    Full Text »    PDF »
Contrasting Roles of Checkpoint Proteins as Recombination Modulators at Fob1-Ter Complexes with or without Fork Arrest.
B. K. Mohanty, N. K. Bairwa, and D. Bastia (2009)
Eukaryot. Cell 8, 487-495
   Abstract »    Full Text »    PDF »
Recombination at DNA replication fork barriers is not universal and is differentially regulated by Swi1.
D. W. Pryce, S. Ramayah, A. Jaendling, and R. J. McFarlane (2009)
PNAS 106, 4770-4775
   Abstract »    Full Text »    PDF »
Psoralen-Induced DNA Interstrand Cross-Links Block Transcription and Induce p53 in an Ataxia-Telangiectasia and Rad3-Related-Dependent Manner.
F. A. Derheimer, J. K. Hicks, M. T. Paulsen, C. E. Canman, and M. Ljungman (2009)
Mol. Pharmacol. 75, 599-607
   Abstract »    Full Text »    PDF »
ATR and H2AX Cooperate in Maintaining Genome Stability under Replication Stress.
R. A. Chanoux, B. Yin, K. A. Urtishak, A. Asare, C. H. Bassing, and E. J. Brown (2009)
J. Biol. Chem. 284, 5994-6003
   Abstract »    Full Text »    PDF »
Fragile Genomic Sites Are Associated with Origins of Replication.
S. C. Di Rienzi, D. Collingwood, M. K. Raghuraman, and B. J. Brewer (2009)
Genome Biol Evol 1, 350-363
   Abstract »    Full Text »    PDF »
Comparative Genomics and Molecular Dynamics of DNA Repeats in Eukaryotes.
G.-F. Richard, A. Kerrest, and B. Dujon (2008)
Microbiol. Mol. Biol. Rev. 72, 686-727
   Abstract »    Full Text »    PDF »
Rad51 suppresses gross chromosomal rearrangement at centromere in Schizosaccharomyces pombe.
K.-i. Nakamura, A. Okamoto, Y. Katou, C. Yadani, T. Shitanda, C. Kaweeteerawat, T. S. Takahashi, T. Itoh, K. Shirahige, H. Masukata, et al. (2008)
EMBO J. 27, 3036-3046
   Abstract »    Full Text »    PDF »
High Rates of "Unselected" Aneuploidy and Chromosome Rearrangements in tel1 mec1 Haploid Yeast Strains.
M. Vernon, K. Lobachev, and T. D. Petes (2008)
Genetics 179, 237-247
   Abstract »    Full Text »    PDF »
Yeast Pch2 promotes domainal axis organization, timely recombination progression, and arrest of defective recombinosomes during meiosis.
G. V. Borner, A. Barot, and N. Kleckner (2008)
PNAS 105, 3327-3332
   Abstract »    Full Text »    PDF »
DNA polymerase kappa produces interrupted mutations and displays polar pausing within mononucleotide microsatellite sequences.
S. E. Hile and K. A. Eckert (2008)
Nucleic Acids Res. 36, 688-696
   Abstract »    Full Text »    PDF »
A Role for Chd1 and Set2 in Negatively Regulating DNA Replication in Saccharomyces cerevisiae.
D. Biswas, S. Takahata, H. Xin, R. Dutta-Biswas, Y. Yu, T. Formosa, and D. J. Stillman (2008)
Genetics 178, 649-659
   Abstract »    Full Text »    PDF »
NBS1 mediates ATR-dependent RPA hyperphosphorylation following replication-fork stall and collapse.
K. C. Manthey, S. Opiyo, J. G. Glanzer, D. Dimitrova, J. Elliott, and G. G. Oakley (2007)
J. Cell Sci. 120, 4221-4229
   Abstract »    Full Text »    PDF »
Differences in the Single-stranded DNA Binding Activities of MCM2-7 and MCM467: MCM2 AND MCM5 DEFINE A SLOW ATP-DEPENDENT STEP.
M. L. Bochman and A. Schwacha (2007)
J. Biol. Chem. 282, 33795-33804
   Abstract »    Full Text »    PDF »
Phosphorylation of ATR-Interacting Protein on Ser239 Mediates an Interaction with Breast-Ovarian Cancer Susceptibility 1 and Checkpoint Function.
M. Venere, A. Snyder, O. Zgheib, and T. D. Halazonetis (2007)
Cancer Res. 67, 6100-6105
   Abstract »    Full Text »    PDF »
Reducing DNA Polymerase {alpha} in the Absence of Drosophila ATR Leads to P53-Dependent Apoptosis and Developmental Defects.
J. R. LaRocque, D. L. Dougherty, S. K. Hussain, and J. Sekelsky (2007)
Genetics 176, 1441-1451
   Abstract »    Full Text »    PDF »
The role of the DNA damage checkpoint in regulation of translesion DNA synthesis.
A. Koren (2007)
Mutagenesis 22, 155-160
   Abstract »    Full Text »    PDF »
Chromosome Rearrangements and the Evolution of Genome Structuring and Adaptability.
A. Crombach and P. Hogeweg (2007)
Mol. Biol. Evol. 24, 1130-1139
   Abstract »    Full Text »    PDF »
Replication fork barriers: pausing for a break or stalling for time?.
K. Labib and B. Hodgson (2007)
EMBO Rep. 8, 346-353
   Abstract »    Full Text »    PDF »
Replication Fork Stalling at Natural Impediments.
E. V. Mirkin and S. M. Mirkin (2007)
Microbiol. Mol. Biol. Rev. 71, 13-35
   Abstract »    Full Text »    PDF »
Increased Common Fragile Site Expression, Cell Proliferation Defects, and Apoptosis following Conditional Inactivation of Mouse Hus1 in Primary Cultured Cells.
M. Zhu and R. S. Weiss (2007)
Mol. Biol. Cell 18, 1044-1055
   Abstract »    Full Text »    PDF »
Ccr4 contributes to tolerance of replication stress through control of CRT1 mRNA poly(A) tail length.
R. N. Woolstencroft, T. H. Beilharz, M. A. Cook, T. Preiss, D. Durocher, and M. Tyers (2006)
J. Cell Sci. 119, 5178-5192
   Abstract »    Full Text »    PDF »
The F-Box Protein Dia2 Overcomes Replication Impedance to Promote Genome Stability in Saccharomyces cerevisiae.
D. Blake, B. Luke, P. Kanellis, P. Jorgensen, T. Goh, S. Penfold, B.-J. Breitkreutz, D. Durocher, M. Peter, and M. Tyers (2006)
Genetics 174, 1709-1727
   Abstract »    Full Text »    PDF »
The S. cerevisiae Rrm3p DNA helicase moves with the replication fork and affects replication of all yeast chromosomes..
A. Azvolinsky, S. Dunaway, J. Z. Torres, J. B. Bessler, and V. A. Zakian (2006)
Genes & Dev. 20, 3104-3116
   Abstract »    Full Text »    PDF »
Limiting amounts of budding yeast Rad53 S-phase checkpoint activity results in increased resistance to DNA alkylation damage.
V. Cordon-Preciado, S. Ufano, and A. Bueno (2006)
Nucleic Acids Res. 34, 5852-5862
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Kaposi's Sarcoma-Associated Herpesvirus Terminal Repeat Element Binding Proteins.
H. Si, S. C. Verma, and E. S. Robertson (2006)
J. Virol. 80, 9017-9030
   Abstract »    Full Text »    PDF »
Coordination of DNA synthesis and replicative unwinding by the S-phase checkpoint pathways.
M. N. Nedelcheva-Veleva, D. B. Krastev, and S. S. Stoynov (2006)
Nucleic Acids Res. 34, 4138-4146
   Abstract »    Full Text »    PDF »
Novel Role for Checkpoint Rad53 Protein Kinase in the Initiation of Chromosomal DNA Replication in Saccharomyces cerevisiae.
P. R. Dohrmann and R. A. Sclafani (2006)
Genetics 174, 87-99
   Abstract »    Full Text »    PDF »
Genome-wide replication profiles of S-phase checkpoint mutants reveal fragile sites in yeast.
M. Raveendranathan, S. Chattopadhyay, Y.-T. Bolon, J. Haworth, D. J. Clarke, and A.-K. Bielinsky (2006)
EMBO J. 25, 3627-3639
   Abstract »    Full Text »    PDF »
Transcription regulatory elements are punctuation marks for DNA replication.
E. V. Mirkin, D. Castro Roa, E. Nudler, and S. M. Mirkin (2006)
PNAS 103, 7276-7281
   Abstract »    Full Text »    PDF »
DNA damage responses and their many interactions with the replication fork.
P. R. Andreassen, G. P. H. Ho, and A. D. D'Andrea (2006)
Carcinogenesis 27, 883-892
   Abstract »    Full Text »    PDF »
ATM and ATR promote Mre11 dependent restart of collapsed replication forks and prevent accumulation of DNA breaks.
K. Trenz, E. Smith, S. Smith, and V. Costanzo (2006)
EMBO J. 25, 1764-1774
   Abstract »    Full Text »    PDF »
Chk1 Requirement for High Global Rates of Replication Fork Progression during Normal Vertebrate S Phase.
E. Petermann, A. Maya-Mendoza, G. Zachos, D. A. F. Gillespie, D. A. Jackson, and K. W. Caldecott (2006)
Mol. Cell. Biol. 26, 3319-3326
   Abstract »    Full Text »    PDF »
Smc5p Promotes Faithful Chromosome Transmission and DNA Repair in Saccharomyces cerevisiae.
G. J. Cost and N. R. Cozzarelli (2006)
Genetics 172, 2185-2200
   Abstract »    Full Text »    PDF »
Cycles of chromosome instability are associated with a fragile site and are increased by defects in DNA replication and checkpoint controls in yeast.
A. Admire, L. Shanks, N. Danzl, M. Wang, U. Weier, W. Stevens, E. Hunt, and T. Weinert (2006)
Genes & Dev. 20, 159-173
   Abstract »    Full Text »    PDF »
Evidence of Meiotic Crossover Control in Saccharomyces cerevisiae Through Mec1-Mediated Phosphorylation of Replication Protein A.
A. J. Bartrand, D. Iyasu, S. M. Marinco, and G. S. Brush (2006)
Genetics 172, 27-39
   Abstract »    Full Text »    PDF »
Chk1 and p21 Cooperate to Prevent Apoptosis during DNA Replication Fork Stress.
R. Rodriguez and M. Meuth (2006)
Mol. Biol. Cell 17, 402-412
   Abstract »    Full Text »    PDF »
Replisome instability, fork collapse, and gross chromosomal rearrangements arise synergistically from Mec1 kinase and RecQ helicase mutations.
J. A. Cobb, T. Schleker, V. Rojas, L. Bjergbaek, J. A. Tercero, and S. M. Gasser (2005)
Genes & Dev. 19, 3055-3069
   Abstract »    Full Text »    PDF »
Inactivation of Ku-Mediated End Joining Suppresses mec1{Delta} Lethality by Depleting the Ribonucleotide Reductase Inhibitor Sml1 through a Pathway Controlled by Tel1 Kinase and the Mre11 Complex.
Y. Corda, S. E. Lee, S. Guillot, A. Walther, J. Sollier, A. Arbel-Eden, J. E. Haber, and V. Geli (2005)
Mol. Cell. Biol. 25, 10652-10664
   Abstract »    Full Text »    PDF »
Dimerization of the ATRIP Protein through the Coiled-Coil Motif and Its Implication to the Maintenance of Stalled Replication Forks.
E. Itakura, I. Sawada, and A. Matsuura (2005)
Mol. Biol. Cell 16, 5551-5562
   Abstract »    Full Text »    PDF »
Homologous recombination and nonhomologous end-joining repair pathways regulate fragile site stability.
M. Schwartz, E. Zlotorynski, M. Goldberg, E. Ozeri, A. Rahat, C. l. Sage, B. P.C. Chen, D. J. Chen, R. Agami, and B. Kerem (2005)
Genes & Dev. 19, 2715-2726
   Abstract »    Full Text »    PDF »
Mechanisms of common fragile site instability.
T. W. Glover, M. F. Arlt, A. M. Casper, and S. G. Durkin (2005)
Hum. Mol. Genet. 14, R197-R205
   Abstract »    Full Text »    PDF »
Inverted repeat-stimulated sister-chromatid exchange events are RAD1-independent but reduced in a msh2 mutant.
D. K. Nag, M. Fasullo, Z. Dong, and A. Tronnes (2005)
Nucleic Acids Res. 33, 5243-5249
   Abstract »    Full Text »    PDF »
ATM and ATR make distinct contributions to chromosome end protection and the maintenance of telomeric DNA in Arabidopsis.
L. Vespa, M. Couvillion, E. Spangler, and D. E. Shippen (2005)
Genes & Dev. 19, 2111-2115
   Abstract »    Full Text »    PDF »
Surveillance of Different Recombination Defects in Mouse Spermatocytes Yields Distinct Responses despite Elimination at an Identical Developmental Stage.
M. Barchi, S. Mahadevaiah, M. Di Giacomo, F. Baudat, D. G. de Rooij, P. S. Burgoyne, M. Jasin, and S. Keeney (2005)
Mol. Cell. Biol. 25, 7203-7215
   Abstract »    Full Text »    PDF »
Molecular anatomy and regulation of a stable replisome at a paused eukaryotic DNA replication fork.
A. Calzada, B. Hodgson, M. Kanemaki, A. Bueno, and K. Labib (2005)
Genes & Dev. 19, 1905-1919
   Abstract »    Full Text »    PDF »
A Postsynaptic Role for Rhp55/57 That Is Responsible for Cell Death in {Delta}rqh1 Mutants Following Replication Arrest in Schizosaccharomyces pombe.
J. C. Hope, M. Maftahi, and G. A. Freyer (2005)
Genetics 170, 519-531
   Abstract »    Full Text »    PDF »
Meiotic S-Phase Damage Activates Recombination without Checkpoint Arrest.
D. G. Pankratz and S. L. Forsburg (2005)
Mol. Biol. Cell 16, 1651-1660
   Abstract »    Full Text »    PDF »
Impairment of replication fork progression mediates RNA polII transcription-associated recombination.
F. Prado and A. Aguilera (2005)
EMBO J. 24, 1267-1276
   Abstract »    Full Text »    PDF »
A Genetic Screen for top3 Suppressors in Saccharomyces cerevisiae Identifies SHU1, SHU2, PSY3 and CSM2: Four Genes Involved in Error-Free DNA Repair.
E. Shor, J. Weinstein, and R. Rothstein (2005)
Genetics 169, 1275-1289
   Abstract »    Full Text »    PDF »
Cdk Inhibition in Human Cells Compromises Chk1 Function and Activates a DNA Damage Response.
S. L. Maude and G. H. Enders (2005)
Cancer Res. 65, 780-786
   Abstract »    Full Text »    PDF »
Distinct DNA-damage-dependent and -independent responses drive the loss of oocytes in recombination-defective mouse mutants.
M. Di Giacomo, M. Barchi, F. Baudat, W. Edelmann, S. Keeney, and M. Jasin (2005)
PNAS 102, 737-742
   Abstract »    Full Text »    PDF »
Viral Transport of DNA Damage That Mimics a Stalled Replication Fork.
J. Jurvansuu, K. Raj, A. Stasiak, and P. Beard (2005)
J. Virol. 79, 569-580
   Abstract »    Full Text »    PDF »
Seckel syndrome exhibits cellular features demonstrating defects in the ATR-signalling pathway.
G. K. Alderton, H. Joenje, R. Varon, A. D. Borglum, P. A. Jeggo, and M. O'Driscoll (2004)
Hum. Mol. Genet. 13, 3127-3138
   Abstract »    Full Text »    PDF »
Diminished S-Phase Cyclin-Dependent Kinase Function Elicits Vital Rad53-Dependent Checkpoint Responses in Saccharomyces cerevisiae.
D. G. Gibson, J. G. Aparicio, F. Hu, and O. M. Aparicio (2004)
Mol. Cell. Biol. 24, 10208-10222
   Abstract »    Full Text »    PDF »
Activation of the DNA Damage Checkpoint in Yeast Lacking the Histone Chaperone Anti-Silencing Function 1.
C. J. Ramey, S. Howar, M. Adkins, J. Linger, J. Spicer, and J. K. Tyler (2004)
Mol. Cell. Biol. 24, 10313-10327
   Abstract »    Full Text »    PDF »
Interaction between human MCM7 and Rad17 proteins is required for replication checkpoint signaling.
C.-C. Tsao, C. Geisen, and R. T. Abraham (2004)
EMBO J. 23, 4660-4669
   Abstract »    Full Text »    PDF »
ATR functions as a gene dosage-dependent tumor suppressor on a mismatch repair-deficient background.
Y. Fang, C.-C. Tsao, B. K. Goodman, R. Furumai, C. A. Tirado, R. T. Abraham, and X.-F. Wang (2004)
EMBO J. 23, 3164-3174
   Abstract »    Full Text »    PDF »
Genetic Instability of Heterozygous, Hybrid, Natural Wine Yeasts.
M. Ramirez, A. Vinagre, J. Ambrona, F. Molina, M. Maqueda, and J. E. Rebollo (2004)
Appl. Envir. Microbiol. 70, 4686-4691
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882