Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 297 (5581): 623-626

Copyright © 2002 by the American Association for the Advancement of Science

A Conserved p38 MAP Kinase Pathway in Caenorhabditis elegans Innate Immunity

Dennis H. Kim,1* Rhonda Feinbaum,1* Geneviève Alloing,1dagger Fred E. Emerson,1 Danielle A. Garsin,1 Hideki Inoue,2 Miho Tanaka-Hino,2 Naoki Hisamoto,2 Kunihiro Matsumoto,2 Man-Wah Tan,1ddagger Frederick M. Ausubel1§

A genetic screen for Caenorhabditis elegans mutants with enhanced susceptibility to killing by Pseudomonas aeruginosa led to the identification of two genes required for pathogen resistance: sek-1, which encodes a mitogen-activated protein (MAP) kinase kinase, and nsy-1, which encodes a MAP kinase kinase kinase. RNA interference assays and biochemical analysis established that a p38 ortholog, pmk-1, functions as the downstream MAP kinase required for pathogen defense. These data suggest that this MAP kinase signaling cassette represents an ancient feature of innate immune responses in evolutionarily diverse species.

1 Department of Genetics, Harvard Medical School, and Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA.
2 Department of Molecular Biology, Graduate School of Science, Nagoya University and CREST, Japan Science and Technology Corporation, Chikusa-ku, Nagoya 464-8602, Japan.
*   These authors contributed equally to this work.

dagger    Present address: Laboratoire de Biologie Vegetale et Microbiologie, Universite de Nice-Sophia Antipolis, Parc Valrose 06108 Nice Cedex 2, France.

ddagger    Present address: Department of Genetics, Stanford University School of Medicine, 300 Pasteur Drive, Room M337, Stanford, CA 94305-5120, USA.

§   To whom correspondence should be addressed. E-mail: ausubel{at}

Roquin-2 Promotes Ubiquitin-Mediated Degradation of ASK1 to Regulate Stress Responses.
T. Maruyama, T. Araki, Y. Kawarazaki, I. Naguro, S. Heynen, P. Aza-Blanc, Z. Ronai, A. Matsuzawa, and H. Ichijo (2014)
Science Signaling 7, ra8
   Abstract »    Full Text »    PDF »
Axon Regeneration Genes Identified by RNAi Screening in C. elegans.
P. Nix, M. Hammarlund, L. Hauth, M. Lachnit, E. M. Jorgensen, and M. Bastiani (2014)
J. Neurosci. 34, 629-645
   Abstract »    Full Text »    PDF »
New Role for DCR-1/Dicer in Caenorhabditis elegans Innate Immunity against the Highly Virulent Bacterium Bacillus thuringiensis DB27.
I. Iatsenko, A. Sinha, C. Rodelsperger, and R. J. Sommer (2013)
Infect. Immun. 81, 3942-3957
   Abstract »    Full Text »    PDF »
Burkholderia pseudomallei suppresses Caenorhabditis elegans immunity by specific degradation of a GATA transcription factor.
S.-H. Lee, R.-R. Wong, C.-Y. Chin, T.-Y. Lim, S.-A. Eng, C. Kong, N. A. Ijap, M.-S. Lau, M.-P. Lim, Y.-H. Gan, et al. (2013)
PNAS 110, 15067-15072
   Abstract »    Full Text »    PDF »
CAMKII and Calcineurin regulate the lifespan of Caenorhabditis elegans through the FOXO transcription factor DAF-16.
L. Tao, Q. Xie, Y.-H. Ding, S.-T. Li, S. Peng, Y.-P. Zhang, D. Tan, Z. Yuan, and M.-Q. Dong (2013)
eLife Sci 2, e00518
   Abstract »    Full Text »    PDF »
The Level of p38{alpha} Mitogen-Activated Protein Kinase Activation in Airway Epithelial Cells Determines the Onset of Innate Immune Responses to Planktonic and Biofilm Pseudomonas aeruginosa.
T. Beaudoin, S. LaFayette, L. Roussel, J. Berube, M. Desrosiers, D. Nguyen, and S. Rousseau (2013)
The Journal of Infectious Disease 207, 1544-1555
   Abstract »    Full Text »    PDF »
Association with Soil Bacteria Enhances p38-Dependent Infection Resistance in Caenorhabditis elegans.
S. Montalvo-Katz, H. Huang, M. D. Appel, M. Berg, and M. Shapira (2013)
Infect. Immun. 81, 514-520
   Abstract »    Full Text »    PDF »
MAPK phosphorylation is implicated in the adaptation to desiccation stress in nematodes.
M. C. Banton and A. Tunnacliffe (2012)
J. Exp. Biol. 215, 4288-4298
   Abstract »    Full Text »    PDF »
Enhanced Energy Metabolism Contributes to the Extended Life Span of Calorie-restricted Caenorhabditis elegans.
Y. Yuan, C. S. Kadiyala, T.-T. Ching, P. Hakimi, S. Saha, H. Xu, C. Yuan, V. Mullangi, L. Wang, E. Fivenson, et al. (2012)
J. Biol. Chem. 287, 31414-31426
   Abstract »    Full Text »    PDF »
Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes.
T. Suzuki, J. Campbell, Y. Kim, J. G. Swoboda, E. Mylonakis, S. Walker, and M. S. Gilmore (2012)
J. Antimicrob. Chemother. 67, 2143-2151
   Abstract »    Full Text »    PDF »
Nematode-Bacterium Symbioses--Cooperation and Conflict Revealed in the "Omics" Age.
K. E. Murfin, A. R. Dillman, J. M. Foster, S. Bulgheresi, B. E. Slatko, P. W. Sternberg, and H. Goodrich-Blair (2012)
Biol. Bull. 223, 85-102
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans Immune Conditioning with the Probiotic Bacterium Lactobacillus acidophilus Strain NCFM Enhances Gram-Positive Immune Responses.
Y. Kim and E. Mylonakis (2012)
Infect. Immun. 80, 2500-2508
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans, a Model Organism for Investigating Immunity.
E. K. Marsh and R. C. May (2012)
Appl. Envir. Microbiol. 78, 2075-2081
   Abstract »    Full Text »    PDF »
Stabilization of RNT-1 Protein, Runt-related Transcription Factor (RUNX) Protein Homolog of Caenorhabditis elegans, by Oxidative Stress through Mitogen-activated Protein Kinase Pathway.
K. Lee, J. Shim, J. Bae, Y.-J. Kim, and J. Lee (2012)
J. Biol. Chem. 287, 10444-10452
   Abstract »    Full Text »    PDF »
Competition and Resilience between Founder and Introduced Bacteria in the Caenorhabditis elegans Gut.
C. Portal-Celhay and M. J. Blaser (2012)
Infect. Immun. 80, 1288-1299
   Abstract »    Full Text »    PDF »
Control of Nonapoptotic Developmental Cell Death in Caenorhabditis elegans by a Polyglutamine-Repeat Protein.
E. S. Blum, M. C. Abraham, S. Yoshimura, Y. Lu, and S. Shaham (2012)
Science 335, 970-973
   Abstract »    Full Text »    PDF »
p38 MAPKs regulate the expression of genes in the dopamine synthesis pathway through phosphorylation of NR4A nuclear receptors.
Y. Sekine, S. Takagahara, R. Hatanaka, T. Watanabe, H. Oguchi, T. Noguchi, I. Naguro, K. Kobayashi, M. Tsunoda, T. Funatsu, et al. (2011)
J. Cell Sci. 124, 3006-3016
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans NPR-1-mediated behaviors are suppressed in the presence of mucoid bacteria.
K. C. Reddy, R. C. Hunter, N. Bhatla, D. K. Newman, and D. H. Kim (2011)
PNAS 108, 12887-12892
   Abstract »    Full Text »    PDF »
Killing of Candida albicans Filaments by Salmonella enterica Serovar Typhimurium Is Mediated by sopB Effectors, Parts of a Type III Secretion System.
Y. Kim and E. Mylonakis (2011)
Eukaryot. Cell 10, 782-790
   Abstract »    Full Text »    PDF »
Regulation of Anoxic Death in Caenorhabditis elegans by Mammalian Apoptosis Signal-Regulating Kinase (ASK) Family Proteins.
T. Hayakawa, K. Kato, R. Hayakawa, N. Hisamoto, K. Matsumoto, K. Takeda, and H. Ichijo (2011)
Genetics 187, 785-792
   Abstract »    Full Text »    PDF »
Regulation of the severity of neuroinflammation and demyelination by TLR-ASK1-p38 pathway.
X. Guo, C. Harada, K. Namekata, A. Matsuzawa, M. Camps, H. Ji, D. Swinnen, C. Jorand-Lebrun, M. Muzerelle, P.-A. Vitte, et al. (2010)
EMBO Mol Med. 2, 504-515
   Abstract »    Full Text »    PDF »
Participation of the p38 pathway in Drosophila host defense against pathogenic bacteria and fungi.
J. Chen, C. Xie, L. Tian, L. Hong, X. Wu, and J. Han (2010)
PNAS 107, 20774-20779
   Abstract »    Full Text »    PDF »
It takes nerves to fight infections: insights on neuro-immune interactions from C. elegans.
T. Kawli, F. He, and M.-W. Tan (2010)
Dis. Model. Mech. 3, 721-731
   Abstract »    Full Text »    PDF »
Insect Cytokine Paralytic Peptide (PP) Induces Cellular and Humoral Immune Responses in the Silkworm Bombyx mori.
K. Ishii, H. Hamamoto, M. Kamimura, Y. Nakamura, H. Noda, K. Imamura, K. Mita, and K. Sekimizu (2010)
J. Biol. Chem. 285, 28635-28642
   Abstract »    Full Text »    PDF »
Systemic and cell intrinsic roles of Gq{alpha} signaling in the regulation of innate immunity, oxidative stress, and longevity in Caenorhabditis elegans.
T. Kawli, C. Wu, and M.-W. Tan (2010)
PNAS 107, 13788-13793
   Abstract »    Full Text »    PDF »
The Longevity Effect of Tannic Acid in Caenorhabditis elegans: Disposable Soma Meets Hormesis.
N. Saul, K. Pietsch, R. Menzel, S. R. Sturzenbaum, and C. E. W. Steinberg (2010)
J Gerontol A Biol Sci Med Sci 65A, 626-635
   Abstract »    Full Text »    PDF »
Hydrogen Peroxide-sensitive Cysteines in the Sty1 MAPK Regulate the Transcriptional Response to Oxidative Stress.
A. M. Day and E. A. Veal (2010)
J. Biol. Chem. 285, 7505-7516
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans Ste20-Related Kinase and Rac-Type Small GTPase Regulate the c-Jun N-Terminal Kinase Signaling Pathway Mediating the Stress Response.
K. Fujiki, T. Mizuno, N. Hisamoto, and K. Matsumoto (2010)
Mol. Cell. Biol. 30, 995-1003
   Abstract »    Full Text »    PDF »
bZIP transcription factor zip-2 mediates an early response to Pseudomonas aeruginosa infection in Caenorhabditis elegans.
K. A. Estes, T. L. Dunbar, J. R. Powell, F. M. Ausubel, and E. R. Troemel (2010)
PNAS 107, 2153-2158
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans Germ Line Regulates Distinct Signaling Pathways to Control Lifespan and Innate Immunity.
S. Alper, M. K. McElwee, J. Apfeld, B. Lackford, J. H. Freedman, and D. A. Schwartz (2010)
J. Biol. Chem. 285, 1822-1828
   Abstract »    Full Text »    PDF »
Regulation of DAF-16-mediated Innate Immunity in Caenorhabditis elegans.
V. Singh and A. Aballay (2009)
J. Biol. Chem. 284, 35580-35587
   Abstract »    Full Text »    PDF »
Ce-Duox1/BLI-3 Generates Reactive Oxygen Species as a Protective Innate Immune Mechanism in Caenorhabditis elegans.
V. Chavez, A. Mohri-Shiomi, and D. A. Garsin (2009)
Infect. Immun. 77, 4983-4989
   Abstract »    Full Text »    PDF »
Candida albicans Hyphal Formation and Virulence Assessed Using a Caenorhabditis elegans Infection Model.
R. Pukkila-Worley, A. Y. Peleg, E. Tampakakis, and E. Mylonakis (2009)
Eukaryot. Cell 8, 1750-1758
   Abstract »    Full Text »    PDF »
The G protein-coupled receptor FSHR-1 is required for the Caenorhabditis elegans innate immune response.
J. R. Powell, D. H. Kim, and F. M. Ausubel (2009)
PNAS 106, 2782-2787
   Abstract »    Full Text »    PDF »
A Polymorphism in npr-1 Is a Behavioral Determinant of Pathogen Susceptibility in C. elegans.
K. C. Reddy, E. C. Andersen, L. Kruglyak, and D. H. Kim (2009)
Science 323, 382-384
   Abstract »    Full Text »    PDF »
Role of the Caenorhabditis elegans Shc Adaptor Protein in the c-Jun N-Terminal Kinase Signaling Pathway.
T. Mizuno, K. Fujiki, A. Sasakawa, N. Hisamoto, and K. Matsumoto (2008)
Mol. Cell. Biol. 28, 7041-7049
   Abstract »    Full Text »    PDF »
Role for {beta}-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial-pathogen interactions.
J. E. Irazoqui, A. Ng, R. J. Xavier, and F. M. Ausubel (2008)
PNAS 105, 17469-17474
   Abstract »    Full Text »    PDF »
Studying host-pathogen interactions and innate immunity in Caenorhabditis elegans.
D. Kim (2008)
Dis. Model. Mech. 1, 205-208
   Abstract »    Full Text »    PDF »
A Functional Phenylacetic Acid Catabolic Pathway Is Required for Full Pathogenicity of Burkholderia cenocepacia in the Caenorhabditis elegans Host Model.
R. J. Law, J. N. R. Hamlin, A. Sivro, S. J. McCorrister, G. A. Cardama, and S. T. Cardona (2008)
J. Bacteriol. 190, 7209-7218
   Abstract »    Full Text »    PDF »
Innate Immunity in Caenorhabditis elegans Is Regulated by Neurons Expressing NPR-1/GPCR.
K. L. Styer, V. Singh, E. Macosko, S. E. Steele, C. I. Bargmann, and A. Aballay (2008)
Science 322, 460-464
   Abstract »    Full Text »    PDF »
Group A Streptococcus Activates Type I Interferon Production and MyD88-dependent Signaling without Involvement of TLR2, TLR4, and TLR9.
N. Gratz, M. Siller, B. Schaljo, Z. A. Pirzada, I. Gattermeier, I. Vojtek, C. J. Kirschning, H. Wagner, S. Akira, E. Charpentier, et al. (2008)
J. Biol. Chem. 283, 19879-19887
   Abstract »    Full Text »    PDF »
Traversing a wormhole to combat Parkinson's disease.
G. A. Caldwell and K. A. Caldwell (2008)
Dis. Model. Mech. 1, 32-36
   Abstract »    Full Text »    PDF »
Identification of innate immunity genes and pathways using a comparative genomics approach.
S. Alper, R. Laws, B. Lackford, W. A. Boyd, P. Dunlap, J. H. Freedman, and D. A. Schwartz (2008)
PNAS 105, 7016-7021
   Abstract »    Full Text »    PDF »
Cadmium-Induced Germline Apoptosis in Caenorhabditis elegans: The Roles of HUS1, p53, and MAPK Signaling Pathways.
S. Wang, M. Tang, B. Pei, X. Xiao, J. Wang, H. Hang, and L. Wu (2008)
Toxicol. Sci. 102, 345-351
   Abstract »    Full Text »    PDF »
DAF-16-Dependent Suppression of Immunity During Reproduction in Caenorhabditis elegans.
S. Miyata, J. Begun, E. R. Troemel, and F. M. Ausubel (2008)
Genetics 178, 903-918
   Abstract »    Full Text »    PDF »
A conserved Toll-like receptor is required for Caenorhabditis elegans innate immunity.
J. L. Tenor and A. Aballay (2008)
EMBO Rep. 9, 103-109
   Abstract »    Full Text »    PDF »
The p38 Mitogen-Activated Protein Kinase Signaling Pathway Is Coupled to Toll-Like Receptor 5 To Mediate Gene Regulation in Response to Pseudomonas aeruginosa Infection in Human Airway Epithelial Cells.
Z. Zhang, W. Reenstra, D. J. Weiner, J.-P. Louboutin, and J. M. Wilson (2007)
Infect. Immun. 75, 5985-5992
   Abstract »    Full Text »    PDF »
Specificity and Complexity of the Caenorhabditis elegans Innate Immune Response.
S. Alper, S. J. McBride, B. Lackford, J. H. Freedman, and D. A. Schwartz (2007)
Mol. Cell. Biol. 27, 5544-5553
   Abstract »    Full Text »    PDF »
Oxidative Stress Enzymes Are Required for DAF-16-Mediated Immunity Due to Generation of Reactive Oxygen Species by Caenorhabditis elegans.
V. Chavez, A. Mohri-Shiomi, A. Maadani, L. A. Vega, and D. A. Garsin (2007)
Genetics 176, 1567-1577
   Abstract »    Full Text »    PDF »
Identification of a Novel Gene Family Involved in Osmotic Stress Response in Caenorhabditis elegans.
J. M. Wheeler and J. H. Thomas (2006)
Genetics 174, 1327-1336
   Abstract »    Full Text »    PDF »
A conserved role for a GATA transcription factor in regulating epithelial innate immune responses.
M. Shapira, B. J. Hamlin, J. Rong, K. Chen, M. Ronen, and M.-W. Tan (2006)
PNAS 103, 14086-14091
   Abstract »    Full Text »    PDF »
Heat-shock transcription factor (HSF)-1 pathway required for Caenorhabditis elegans immunity.
V. Singh and A. Aballay (2006)
PNAS 103, 13092-13097
   Abstract »    Full Text »    PDF »
Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum.
D. O'Rourke, D. Baban, M. Demidova, R. Mott, and J. Hodgkin (2006)
Genome Res. 16, 1005-1016
   Abstract »    Full Text »    PDF »
Identification of novel antimicrobials using a live-animal infection model.
T. I. Moy, A. R. Ball, Z. Anklesaria, G. Casadei, K. Lewis, and F. M. Ausubel (2006)
PNAS 103, 10414-10419
   Abstract »    Full Text »    PDF »
Regulation of the Caenorhabditis elegans oxidative stress defense protein SKN-1 by glycogen synthase kinase-3.
J. H. An, K. Vranas, M. Lucke, H. Inoue, N. Hisamoto, K. Matsumoto, and T. K. Blackwell (2005)
PNAS 102, 16275-16280
   Abstract »    Full Text »    PDF »
Multiple Genes Affect Sensitivity of Caenorhabditis elegans to the Bacterial Pathogen Microbacterium nematophilum.
M. J. Gravato-Nobre, H. R. Nicholas, R. Nijland, D. O'Rourke, D. E. Whittington, K. J. Yook, and J. Hodgkin (2005)
Genetics 171, 1033-1045
   Abstract »    Full Text »    PDF »
The C. elegans p38 MAPK pathway regulates nuclear localization of the transcription factor SKN-1 in oxidative stress response.
H. Inoue, N. Hisamoto, J. H. An, R. P. Oliveira, E. Nishida, T. K. Blackwell, and K. Matsumoto (2005)
Genes & Dev. 19, 2278-2283
   Abstract »    Full Text »    PDF »
Worms and Flies as Genetically Tractable Animal Models To Study Host-Pathogen Interactions.
E. Mylonakis and A. Aballay (2005)
Infect. Immun. 73, 3833-3841
   Full Text »    PDF »
Functional Genomic Analysis of RNA Interference in C. elegans.
J. K. Kim, H. W. Gabel, R. S. Kamath, M. Tewari, A. Pasquinelli, J.-F. Rual, S. Kennedy, M. Dybbs, N. Bertin, J. M. Kaplan, et al. (2005)
Science 308, 1164-1167
   Abstract »    Full Text »    PDF »
A Toll-interleukin 1 repeat protein at the synapse specifies asymmetric odorant receptor expression via ASK1 MAPKKK signaling.
C.-F. Chuang and C. I. Bargmann (2005)
Genes & Dev. 19, 270-281
   Abstract »    Full Text »    PDF »
A Drosophila p38 orthologue is required for environmental stress responses.
C. R. Craig, J. L. Fink, Y. Yagi, Y. T. Ip, and R. L. Cagan (2004)
EMBO Rep. 5, 1058-1063
   Abstract »    Full Text »    PDF »
MAPping innate immunity.
J. A. T. Young and A. Dillin (2004)
PNAS 101, 12781-12782
   Full Text »    PDF »
Integration of Caenorhabditis elegans MAPK pathways mediating immunity and stress resistance by MEK-1 MAPK kinase and VHP-1 MAPK phosphatase.
D. H. Kim, N. T. Liberati, T. Mizuno, H. Inoue, N. Hisamoto, K. Matsumoto, and F. M. Ausubel (2004)
PNAS 101, 10990-10994
   Abstract »    Full Text »    PDF »
Mitogen-activated protein kinase pathways defend against bacterial pore-forming toxins.
D. L. Huffman, L. Abrami, R. Sasik, J. Corbeil, F. G. van der Goot, and R. V. Aroian (2004)
PNAS 101, 10995-11000
   Abstract »    Full Text »    PDF »
Loss of srf-3-encoded Nucleotide Sugar Transporter Activity in Caenorhabditis elegans Alters Surface Antigenicity and Prevents Bacterial Adherence.
J. Hoflich, P. Berninsone, C. Gobel, M. J. Gravato-Nobre, B. J. Libby, C. Darby, S. M. Politz, J. Hodgkin, C. B. Hirschberg, and R. Baumeister (2004)
J. Biol. Chem. 279, 30440-30448
   Abstract »    Full Text »    PDF »
Roles of MAP Kinase Cascades in Caenorhabditis elegans.
A. Sakaguchi, K. Matsumoto, and N. Hisamoto (2004)
J. Biochem. 136, 7-11
   Abstract »    Full Text »    PDF »
The Caenorhabditis elegans MAPK phosphatase VHP-1 mediates a novel JNK-like signaling pathway in stress response.
T. Mizuno, N. Hisamoto, T. Terada, T. Kondo, M. Adachi, E. Nishida, D. H. Kim, F. M. Ausubel, and K. Matsumoto (2004)
EMBO J. 23, 2226-2234
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans OSR-1 Regulates Behavioral and Physiological Responses to Hyperosmotic Environments.
A. Solomon, S. Bandhakavi, S. Jabbar, R. Shah, G. J. Beitel, and R. I. Morimoto (2004)
Genetics 167, 161-170
   Abstract »    Full Text »    PDF »
Requirement for a conserved Toll/interleukin-1 resistance domain protein in the Caenorhabditis elegans immune response.
N. T. Liberati, K. A. Fitzgerald, D. H. Kim, R. Feinbaum, D. T. Golenbock, and F. M. Ausubel (2004)
PNAS 101, 6593-6598
   Abstract »    Full Text »    PDF »
Targeting of TAK1 by the NF-{kappa}B protein Relish regulates the JNK-mediated immune response in Drosophila.
J. M. Park, H. Brady, M. G. Ruocco, H. Sun, D. Williams, S. J. Lee, T. Kato Jr., N. Richards, K. Chan, F. Mercurio, et al. (2004)
Genes & Dev. 18, 584-594
   Abstract »    Full Text »    PDF »
Long-Lived C. elegans daf-2 Mutants Are Resistant to Bacterial Pathogens.
D. A. Garsin, J. M. Villanueva, J. Begun, D. H. Kim, C. D. Sifri, S. B. Calderwood, G. Ruvkun, and F. M. Ausubel (2003)
Science 300, 1921
   Full Text »    PDF »
Intracellular Replication of Mycobacterium marinum within Dictyostelium discoideum: Efficient Replication in the Absence of Host Coronin.
J. M. Solomon, G. S. Leung, and R. R. Isberg (2003)
Infect. Immun. 71, 3578-3586
   Abstract »    Full Text »    PDF »
Caenorhabditis elegans as a Model Host for Staphylococcus aureus Pathogenesis.
C. D. Sifri, J. Begun, F. M. Ausubel, and S. B. Calderwood (2003)
Infect. Immun. 71, 2208-2217
   Abstract »    Full Text »    PDF »
Nonlinear partial differential equations and applications: Killing of Caenorhabditis elegans by Cryptococcus neoformans as a model of yeast pathogenesis.
E. Mylonakis, F. M. Ausubel, J. R. Perfect, J. Heitman, and S. B. Calderwood (2002)
PNAS 99, 15675-15680
   Abstract »    Full Text »    PDF »
Innate recognition of bacteria by a macrophage cytosolic surveillance pathway.
M. O'Riordan, C. H. Yi, R. Gonzales, K.-D. Lee, and D. A. Portnoy (2002)
PNAS 99, 13861-13866
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882