Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 297 (5585): 1349-1352

Copyright © 2002 by the American Association for the Advancement of Science

Fusion Pore Dynamics and Insulin Granule Exocytosis in the Pancreatic Islet

Noriko Takahashi,1 Takuya Kishimoto,1 Tomomi Nemoto,1 Takashi Kadowaki,2 Haruo Kasai1*

Insulin secretion from intact mouse pancreatic islets was investigated with two-photon excitation imaging. Insulin granule exocytosis occurred mainly toward the interstitial space, away from blood vessels. The fusion pore was unusually stable with a lifetime of 1.8 seconds. Opening of the 1.4-nanometer-diameter pore was preceded by unrestricted lateral diffusion of lipids along the inner wall of the pore, supporting the idea that this structure is composed of membrane lipids. When the pore dilated to 12 nanometers, the granules rapidly flattened and discharged their contents. Thus, our methodology reveals fusion pore dynamics in intact tissues at nanometer resolution.

1 Department of Cell Physiology, National Institute for Physiological Sciences, and the Graduate University of Advanced Studies, Myodaiji, Okazaki 444-8585, Japan.
2 Department of Metabolic Diseases, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
*   To whom correspondence should be addressed. E-mail: hkasai{at}nips.ac.jp



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Vascular Endothelial Growth Factor-A and Islet Vascularization Are Necessary in Developing, but Not Adult, Pancreatic Islets.
R. B. Reinert, M. Brissova, A. Shostak, F. C. Pan, G. Poffenberger, Q. Cai, G. L. Hundemer, J. Kantz, C. S. Thompson, C. Dai, et al. (2013)
Diabetes 62, 4154-4164
   Abstract »    Full Text »    PDF »
Munc18b Is a Major Mediator of Insulin Exocytosis in Rat Pancreatic {beta}-Cells.
P. P. L. Lam, M. Ohno, S. Dolai, Y. He, T. Qin, T. Liang, D. Zhu, Y. Kang, Y. Liu, M. Kauppi, et al. (2013)
Diabetes 62, 2416-2428
   Abstract »    Full Text »    PDF »
A Local, Periactive Zone Endocytic Machinery at Photoreceptor Synapses in Close Vicinity to Synaptic Ribbons.
S. Wahl, R. Katiyar, and F. Schmitz (2013)
J. Neurosci. 33, 10278-10300
   Abstract »    Full Text »    PDF »
Two Distinct Modes of Exocytotic Fusion Pore Expansion in Large Astrocytic Vesicles.
H. Peng, N. Kang, J. Xu, P. K. Stanton, and J. Kang (2013)
J. Biol. Chem. 288, 16872-16881
   Abstract »    Full Text »    PDF »
Distinct Initial SNARE Configurations Underlying the Diversity of Exocytosis.
H. Kasai, N. Takahashi, and H. Tokumaru (2012)
Physiol Rev 92, 1915-1964
   Abstract »    Full Text »    PDF »
APPL1 potentiates insulin secretion in pancreatic {beta} cells by enhancing protein kinase Akt-dependent expression of SNARE proteins in mice.
K. K. Y. Cheng, K. S. L. Lam, D. Wu, Y. Wang, G. Sweeney, R. L. C. Hoo, J. Zhang, and A. Xu (2012)
PNAS 109, 8919-8924
   Abstract »    Full Text »    PDF »
miR-33a Modulates ABCA1 Expression, Cholesterol Accumulation, and Insulin Secretion in Pancreatic Islets.
N. Wijesekara, L.-h. Zhang, M. H. Kang, T. Abraham, A. Bhattacharjee, G. L. Warnock, C. B. Verchere, and M. R. Hayden (2012)
Diabetes 61, 653-658
   Abstract »    Full Text »    PDF »
Thiopental-induced insulin secretion via activation of IP3-sensitive calcium stores in rat pancreatic {beta}-cells.
H.-Q. Dou, Y.-F. Xu, J.-P. Sun, S. Shang, S. Guo, L.-H. Zheng, C.-c. Chen, I. C. Bruce, X. Yu, and Z. Zhou (2012)
Am J Physiol Cell Physiol 302, C796-C803
   Abstract »    Full Text »    PDF »
Islet Cholesterol Accumulation Due to Loss of ABCA1 Leads to Impaired Exocytosis of Insulin Granules.
J. K. Kruit, N. Wijesekara, J. E. M. Fox, X.-Q. Dai, L. R. Brunham, G. J. Searle, G. P. Morgan, A. J. Costin, R. Tang, A. Bhattacharjee, et al. (2011)
Diabetes 60, 3186-3196
   Abstract »    Full Text »    PDF »
Exocytosis from pancreatic {beta}-cells: mathematical modelling of the exit of low-molecular-weight granule content.
J. Galvanovskis, M. Braun, and P. Rorsman (2011)
Interface Focus 1, 143-152
   Abstract »    Full Text »    PDF »
Unperturbed islet -cell function examined in mouse pancreas tissue slices.
Y.-C. Huang, M. Rupnik, and H. Y. Gaisano (2011)
J. Physiol. 589, 395-408
   Abstract »    Full Text »    PDF »
Differential Activity-Dependent Secretion of Brain-Derived Neurotrophic Factor from Axon and Dendrite.
N. Matsuda, H. Lu, Y. Fukata, J. Noritake, H. Gao, S. Mukherjee, T. Nemoto, M. Fukata, and M.-m. Poo (2009)
J. Neurosci. 29, 14185-14198
   Abstract »    Full Text »    PDF »
Inhibitory Effects of Leptin on Pancreatic {alpha}-Cell Function.
E. Tuduri, L. Marroqui, S. Soriano, A. B. Ropero, T. M. Batista, S. Piquer, M. A. Lopez-Boado, E. M. Carneiro, R. Gomis, A. Nadal, et al. (2009)
Diabetes 58, 1616-1624
   Abstract »    Full Text »    PDF »
Cortical F-Actin, the Exocytic Mode, and Neuropeptide Release in Mouse Chromaffin Cells Is Regulated by Myristoylated Alanine-rich C-Kinase Substrate and Myosin II.
B. W. Doreian, T. G. Fulop, R. L. Meklemburg, and C. B. Smith (2009)
Mol. Biol. Cell 20, 3142-3154
   Abstract »    Full Text »    PDF »
Imaging of evoked dense-core-vesicle exocytosis in hippocampal neurons reveals long latencies and kiss-and-run fusion events.
X. Xia, V. Lessmann, and T. F. J. Martin (2009)
J. Cell Sci. 122, 75-82
   Abstract »    Full Text »    PDF »
Synaptotagmin-1 Utilizes Membrane Bending and SNARE Binding to Drive Fusion Pore Expansion.
K. L. Lynch, R. R.L. Gerona, D. M. Kielar, S. Martens, H. T. McMahon, and T. F.J. Martin (2008)
Mol. Biol. Cell 19, 5093-5103
   Abstract »    Full Text »    PDF »
Myosin II Activation and Actin Reorganization Regulate the Mode of Quantal Exocytosis in Mouse Adrenal Chromaffin Cells.
B. W. Doreian, T. G. Fulop, and C. B. Smith (2008)
J. Neurosci. 28, 4470-4478
   Abstract »    Full Text »    PDF »
Functional Studies in Living Animals Using Multiphoton Microscopy.
K. W. Dunn and T. A. Sutton (2008)
ILAR J 49, 66-77
   Abstract »    Full Text »    PDF »
Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating.
N. Vardjan, M. Stenovec, J. Jorgacevski, M. Kreft, and R. Zorec (2007)
J. Physiol. 585, 655-661
   Abstract »    Full Text »    PDF »
Dynamin Is Functionally Coupled to Insulin Granule Exocytosis.
L. Min, Y. M. Leung, A. Tomas, R. T. Watson, H. Y. Gaisano, P. A. Halban, J. E. Pessin, and J. C. Hou (2007)
J. Biol. Chem. 282, 33530-33536
   Abstract »    Full Text »    PDF »
Two cAMP-dependent pathways differentially regulate exocytosis of large dense-core and small vesicles in mouse beta-cells.
H. Hatakeyama, N. Takahashi, T. Kishimoto, T. Nemoto, and H. Kasai (2007)
J. Physiol. 582, 1087-1098
   Abstract »    Full Text »    PDF »
Human Insulin Vesicle Dynamics During Pulsatile Secretion.
D. J. Michael, W. Xiong, X. Geng, P. Drain, and R. H. Chow (2007)
Diabetes 56, 1277-1288
   Abstract »    Full Text »    PDF »
Subnanometer Fusion Pores in Spontaneous Exocytosis of Peptidergic Vesicles.
N. Vardjan, M. Stenovec, J. Jorgacevski, M. Kreft, and R. Zorec (2007)
J. Neurosci. 27, 4737-4746
   Abstract »    Full Text »    PDF »
The Ins and Outs of Secretion from Pancreatic {beta}-Cells: Control of Single-Vesicle Exo- and Endocytosis.
P. E. MacDonald and P. Rorsman (2007)
Physiology 22, 113-121
   Abstract »    Full Text »    PDF »
Insulin exocytotic mechanism by imaging technique..
M. Ohara-Imaizumi and S. Nagamatsu (2006)
J. Biochem. 140, 1-5
   Abstract »    Full Text »    PDF »
Insulin Vesicle Release: Walk, Kiss, Pause ... Then Run.
G. A. Rutter and E. V. Hill (2006)
Physiology 21, 189-196
   Abstract »    Full Text »    PDF »
Sustained Exposure to High Glucose Concentrations Modifies Glucose Signaling and the Mechanics of Secretory Vesicle Fusion in Primary Rat Pancreatic {beta}-Cells..
T. Tsuboi, M. A. Ravier, L. E. Parton, and G. A. Rutter (2006)
Diabetes 55, 1057-1065
   Abstract »    Full Text »    PDF »
Pancreatic {beta}-Cells Secrete Insulin in Fast- and Slow-Release Forms.
D. J. Michael, R. A. Ritzel, L. Haataja, and R. H. Chow (2006)
Diabetes 55, 600-607
   Abstract »    Full Text »    PDF »
Hepatocyte Nuclear Factor-4{alpha} Is Essential for Glucose-stimulated Insulin Secretion by Pancreatic beta-Cells.
A. Miura, K. Yamagata, M. Kakei, H. Hatakeyama, N. Takahashi, K. Fukui, T. Nammo, K. Yoneda, Y. Inoue, F. M. Sladek, et al. (2006)
J. Biol. Chem. 281, 5246-5257
   Abstract »    Full Text »    PDF »
Vacuolar sequential exocytosis of large dense-core vesicles in adrenal medulla.
T. Kishimoto, R. Kimura, T.-T. Liu, T. Nemoto, N. Takahashi, and H. Kasai (2006)
EMBO J. 25, 673-682
   Abstract »    Full Text »    PDF »
Rapid glucose sensing by protein kinase A for insulin exocytosis in mouse pancreatic islets.
H. Hatakeyama, T. Kishimoto, T. Nemoto, H. Kasai, and N. Takahashi (2006)
J. Physiol. 570, 271-282
   Abstract »    Full Text »    PDF »
Calcium increases endocytotic vesicle size and accelerates membrane fission in insulin-secreting INS-1 cells.
P. E. MacDonald, L. Eliasson, and P. Rorsman (2005)
J. Cell Sci. 118, 5911-5920
   Abstract »    Full Text »    PDF »
Dopamine D2-like Receptors Are Expressed in Pancreatic Beta Cells and Mediate Inhibition of Insulin Secretion.
B. Rubi, S. Ljubicic, S. Pournourmohammadi, S. Carobbio, M. Armanet, C. Bartley, and P. Maechler (2005)
J. Biol. Chem. 280, 36824-36832
   Abstract »    Full Text »    PDF »
Exocytosis and endocytosis of small vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis.
T.-T. Liu, T. Kishimoto, H. Hatakeyama, T. Nemoto, N. Takahashi, and H. Kasai (2005)
J. Physiol. 568, 917-929
   Abstract »    Full Text »    PDF »
Sequential compound exocytosis of large dense-core vesicles in PC12 cells studied with TEPIQ (two-photon extracellular polar-tracer imaging-based quantification) analysis.
T. Kishimoto, T.-T. Liu, H. Hatakeyama, T. Nemoto, N. Takahashi, and H. Kasai (2005)
J. Physiol. 568, 905-915
   Abstract »    Full Text »    PDF »
A new quantitative (two-photon extracellular polar-tracer imaging-based quantification (TEPIQ)) analysis for diameters of exocytic vesicles and its application to mouse pancreatic islets.
H. Kasai, H. Hatakeyama, T. Kishimoto, T.-T. Liu, T. Nemoto, and N. Takahashi (2005)
J. Physiol. 568, 891-903
   Abstract »    Full Text »    PDF »
PKA-Dependent and PKA-Independent Pathways for cAMP-Regulated Exocytosis.
S. Seino and T. Shibasaki (2005)
Physiol Rev 85, 1303-1342
   Abstract »    Full Text »    PDF »
Selective nucleotide-release from dense-core granules in insulin-secreting cells.
S. Obermuller, A. Lindqvist, J. Karanauskaite, J. Galvanovskis, P. Rorsman, and S. Barg (2005)
J. Cell Sci. 118, 4271-4282
   Abstract »    Full Text »    PDF »
Glucagon-Like Peptide 1 Regulates Sequential and Compound Exocytosis in Pancreatic Islet {beta}-Cells.
E. P. Kwan and H. Y. Gaisano (2005)
Diabetes 54, 2734-2743
   Abstract »    Full Text »    PDF »
Activity-Dependent Differential Transmitter Release in Mouse Adrenal Chromaffin Cells.
T. Fulop, S. Radabaugh, and C. Smith (2005)
J. Neurosci. 25, 7324-7332
   Abstract »    Full Text »    PDF »
Imaging individual retroviral fusion events: From hemifusion to pore formation and growth.
G. B. Melikyan, R. J. O. Barnard, L. G. Abrahamyan, W. Mothes, and J. A. T. Young (2005)
PNAS 102, 8728-8733
   Abstract »    Full Text »    PDF »
Class II fusion protein of alphaviruses drives membrane fusion through the same pathway as class I proteins.
E. Zaitseva, A. Mittal, D. E. Griffin, and L. V. Chernomordik (2005)
J. Cell Biol. 169, 167-177
   Abstract »    Full Text »    PDF »
Regulated Exocytosis and Kiss-and-Run of Synaptic-Like Microvesicles in INS-1 and Primary Rat {beta}-Cells.
P. E. MacDonald, S. Obermuller, J. Vikman, J. Galvanovskis, P. Rorsman, and L. Eliasson (2005)
Diabetes 54, 736-743
   Abstract »    Full Text »    PDF »
Two phases of zymogen granule lifetime in mouse pancreas: ghost granules linger after exocytosis of contents.
P. Thorn and I. Parker (2005)
J. Physiol. 563, 433-442
   Abstract »    Full Text »    PDF »
Mechanisms of Dense Core Vesicle Recapture following "Kiss and Run" ("Cavicapture") Exocytosis in Insulin-secreting Cells.
T. Tsuboi, H. T. McMahon, and G. A. Rutter (2004)
J. Biol. Chem. 279, 47115-47124
   Abstract »    Full Text »    PDF »
Cross Talk between Metabotropic and Ionotropic Glutamate Receptor-Mediated Signaling in Parallel Fiber-Induced Inositol 1,4,5-Trisphosphate Production in Cerebellar Purkinje Cells.
Y. Okubo, S. Kakizawa, K. Hirose, and M. Iino (2004)
J. Neurosci. 24, 9513-9520
   Abstract »    Full Text »    PDF »
Visualization of Regulated Exocytosis with a Granule-Membrane Probe Using Total Internal Reflection Microscopy.
M. W. Allersma, L. Wang, D. Axelrod, and R. W. Holz (2004)
Mol. Biol. Cell 15, 4658-4668
   Abstract »    Full Text »    PDF »
Stabilization of Exocytosis by Dynamic F-actin Coating of Zymogen Granules in Pancreatic Acini.
T. Nemoto, T. Kojima, A. Oshima, H. Bito, and H. Kasai (2004)
J. Biol. Chem. 279, 37544-37550
   Abstract »    Full Text »    PDF »
Direct imaging shows that insulin granule exocytosis occurs by complete vesicle fusion.
L. Ma, V. P. Bindokas, A. Kuznetsov, C. Rhodes, L. Hays, J. M. Edwardson, K. Ueda, D. F. Steiner, and L. H. Philipson (2004)
PNAS 101, 9266-9271
   Abstract »    Full Text »    PDF »
Sequential exocytosis of insulin granules is associated with redistribution of SNAP25.
N. Takahashi, H. Hatakeyama, H. Okado, A. Miwa, T. Kishimoto, T. Kojima, T. Abe, and H. Kasai (2004)
J. Cell Biol. 165, 255-262
   Abstract »    Full Text »    PDF »
Secretory Granule Exocytosis.
R. D. Burgoyne and A. Morgan (2003)
Physiol Rev 83, 581-632
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882