Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 297 (5585): 1352-1354

Copyright © 2002 by the American Association for the Advancement of Science

Requirement for Caspase-2 in Stress-Induced Apoptosis Before Mitochondrial Permeabilization

Patrice Lassus, Ximena Opitz-Araya, Yuri Lazebnik*

A current view is that cytotoxic stress, such as DNA damage, induces apoptosis by regulating the permeability of mitochondria. Mitochondria sequester several proteins that, if released, kill by activating caspases, the proteases that disassemble the cell. Cytokines activate caspases in a different way, by assembling receptor complexes that activate caspases directly; in this case, the subsequent mitochondrial permeabilization accelerates cell disassembly by amplifying caspase activity. We found that cytotoxic stress causes activation of caspase-2, and that this caspase is required for the permeabilization of mitochondria. Therefore, we argue that cytokine-induced and stress-induced apoptosis act through conceptually similar pathways in which mitochondria are amplifiers of caspase activity rather than initiators of caspase activation.

Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
*   To whom correspondence should be addressed. E-mail: lazebnik{at}

Molecular mechanisms of neurodegeneration mediated by dysfunctional subcellular organelles in transmissible spongiform encephalopathies.
Z. Song, D. Zhao, and L. Yang (2013)
Acta Biochim Biophys Sin 45, 452-464
   Abstract »    Full Text »    PDF »
Coenzyme Q10 Rescues Ethanol-induced Corneal Fibroblast Apoptosis through the Inhibition of Caspase-2 Activation.
C.-C. Chen, S.-W. Liou, C.-C. Chen, W.-C. Chen, F.-R. Hu, I.-J. Wang, and S.-J. Lin (2013)
J. Biol. Chem. 288, 11689-11704
   Abstract »    Full Text »    PDF »
Identification of Akt Interaction Protein PHF20/TZP That Transcriptionally Regulates p53.
S. Park, D. Kim, H. C. Dan, H. Chen, J. R. Testa, and J. Q. Cheng (2012)
J. Biol. Chem. 287, 11151-11163
   Abstract »    Full Text »    PDF »
Nucleotide Excision Repair Factor XPC Enhances DNA Damage-Induced Apoptosis by Downregulating the Antiapoptotic Short Isoform of Caspase-2.
Q.-E. Wang, C. Han, B. Zhang, K. Sabapathy, and A. A. Wani (2012)
Cancer Res. 72, 666-675
   Abstract »    Full Text »    PDF »
Oncogenic ras-induced Down-regulation of Pro-apoptotic Protease Caspase-2 Is Required for Malignant Transformation of Intestinal Epithelial Cells.
B. H. Yoo, Y. Wang, M. Erdogan, T. Sasazuki, S. Shirasawa, L. Corcos, K. Sabapathy, and K. V. Rosen (2011)
J. Biol. Chem. 286, 38894-38903
   Abstract »    Full Text »    PDF »
Caspase-2-Based Regulation of the Androgen Receptor and Cell Cycle in the Prostate Cancer Cell Line LNCaP.
A. F. Taghiyev, O. W. Rokhlin, and R. B. Glover (2011)
Genes & Cancer 2, 745-752
   Abstract »    Full Text »    PDF »
A Novel Transcription Complex That Selectively Modulates Apoptosis of Breast Cancer Cells through Regulation of FASTKD2.
K. T. Yeung, S. Das, J. Zhang, A. Lomniczi, S. R. Ojeda, C.-F. Xu, T. A. Neubert, and H. H. Samuels (2011)
Mol. Cell. Biol. 31, 2287-2298
   Abstract »    Full Text »    PDF »
Smac Modulates Chemosensitivity in Head and Neck Cancer Cells through the Mitochondrial Apoptotic Pathway.
Q. Sun, X. Zheng, L. Zhang, and J. Yu (2011)
Clin. Cancer Res. 17, 2361-2372
   Abstract »    Full Text »    PDF »
Loss of Caspase-2-dependent Apoptosis Induces Autophagy after Mitochondrial Oxidative Stress in Primary Cultures of Young Adult Cortical Neurons.
M. Tiwari, M. Lopez-Cruzan, W. W. Morgan, and B. Herman (2011)
J. Biol. Chem. 286, 8493-8506
   Abstract »    Full Text »    PDF »
Activation of Caspase-9, but Not Caspase-2 or Caspase-8, Is Essential for Heat-induced Apoptosis in Jurkat Cells.
S. N. Shelton, C. D. Dillard, and J. D. Robertson (2010)
J. Biol. Chem. 285, 40525-40533
   Abstract »    Full Text »    PDF »
Chemopreventive Effects of Frondanol A5, a Cucumaria frondosa Extract, against Rat Colon Carcinogenesis and Inhibition of Human Colon Cancer Cell Growth.
N. B. Janakiram, A. Mohammed, Y. Zhang, C.-I. Choi, C. Woodward, P. Collin, V. E. Steele, and C. V. Rao (2010)
Cancer Prevention Research 3, 82-91
   Abstract »    Full Text »    PDF »
Inflammatory cells regulate p53 and caspases in acute pancreatitis.
Y. Nakamura, J. H. Do, J. Yuan, I. V. Odinokova, O. Mareninova, A. S. Gukovskaya, and S. J. Pandol (2010)
Am J Physiol Gastrointest Liver Physiol 298, G92-G100
   Abstract »    Full Text »    PDF »
RanBPM Has Proapoptotic Activities That Regulate Cell Death Pathways in Response to DNA Damage.
E. Atabakhsh, D. M. Bryce, K. J. Lefebvre, and C. Schild-Poulter (2009)
Mol. Cancer Res. 7, 1962-1972
   Abstract »    Full Text »    PDF »
Restraint of apoptosis during mitosis through interdomain phosphorylation of caspase-2.
J. L. Andersen, C. E. Johnson, C. D. Freel, A. B. Parrish, J. L. Day, M. R. Buchakjian, L. K. Nutt, J. W. Thompson, M. A. Moseley, and S. Kornbluth (2009)
EMBO J. 28, 3216-3227
   Abstract »    Full Text »    PDF »
BH3-only proteins Mcl-1 and Bim as well as endonuclease G are targeted in spongistatin 1-induced apoptosis in breast cancer cells.
U. M. Schneiders, L. Schyschka, A. Rudy, and A. M. Vollmar (2009)
Mol. Cancer Ther. 8, 2914-2925
   Abstract »    Full Text »    PDF »
Ceramide 1-Phosphate Is Required for the Translocation of Group IVA Cytosolic Phospholipase A2 and Prostaglandin Synthesis.
N. F. Lamour, P. Subramanian, D. S. Wijesinghe, R. V. Stahelin, J. V. Bonventre, and C. E. Chalfant (2009)
J. Biol. Chem. 284, 26897-26907
   Abstract »    Full Text »    PDF »
Conversion of Prostate Cancer from Hormone Independency to Dependency Due to AMACR Inhibition: Involvement of Increased AR Expression and Decreased IGF1 Expression.
Anticancer Res 29, 2497-2505
   Abstract »    Full Text »    PDF »
A tumor suppressor function for caspase-2.
L. H. Ho, R. Taylor, L. Dorstyn, D. Cakouros, P. Bouillet, and S. Kumar (2009)
PNAS 106, 5336-5341
   Abstract »    Full Text »    PDF »
Role of Caspase 2 in Apoptotic Signaling in Primate and Murine Germ Cells.
C. Johnson, Y. Jia, C. Wang, Y.-H. Lue, R. S. Swerdloff, X.-S. Zhang, Z.-Y. Hu, Y.-C. Li, Y.-X. Liu, and A. P. S. Hikim (2008)
Biol Reprod 79, 806-814
   Abstract »    Full Text »    PDF »
The PIDDosome mediates delayed death of hippocampal CA1 neurons after transient global cerebral ischemia in rats.
K. Niizuma, H. Endo, C. Nito, D. J. Myer, G. S. Kim, and P. H. Chan (2008)
PNAS 105, 16368-16373
   Abstract »    Full Text »    PDF »
Role of histone deacetylase inhibitor-induced reactive oxygen species and DNA damage in LAQ-824/fludarabine antileukemic interactions.
R. R. Rosato, J. A. Almenara, S. C. Maggio, S. Coe, P. Atadja, P. Dent, and S. Grant (2008)
Mol. Cancer Ther. 7, 3285-3297
   Abstract »    Full Text »    PDF »
Caspase-2: Vestigial Remnant or Master Regulator?.
C. M. Troy and E. M. Ribe (2008)
Science Signaling 1, pe42
   Abstract »    Full Text »    PDF »
Mechanisms of Renal Apoptosis in Health and Disease.
A. B. Sanz, B. Santamaria, M. Ruiz-Ortega, J. Egido, and A. Ortiz (2008)
J. Am. Soc. Nephrol. 19, 1634-1642
   Abstract »    Full Text »    PDF »
Caspase-2 functions upstream of mitochondria in endoplasmic reticulum stress-induced apoptosis by bortezomib in human myeloma cells.
H. Gu, X. Chen, G. Gao, and H. Dong (2008)
Mol. Cancer Ther. 7, 2298-2307
   Abstract »    Full Text »    PDF »
Death Receptors and Caspases But Not Mitochondria Are Activated in the GDNF- or BDNF-Deprived Dopaminergic Neurons.
L.-y. Yu, M. Saarma, and U. Arumae (2008)
J. Neurosci. 28, 7467-7475
   Abstract »    Full Text »    PDF »
Caspase Cleavage of HER-2 Releases a Bad-like Cell Death Effector.
A. M. Strohecker, F. Yehiely, F. Chen, and V. L. Cryns (2008)
J. Biol. Chem. 283, 18269-18282
   Abstract »    Full Text »    PDF »
Caspase-2 Cleavage of BID Is a Critical Apoptotic Signal Downstream of Endoplasmic Reticulum Stress.
J.-P. Upton, K. Austgen, M. Nishino, K. M. Coakley, A. Hagen, D. Han, F. R. Papa, and S. A. Oakes (2008)
Mol. Cell. Biol. 28, 3943-3951
   Abstract »    Full Text »    PDF »
E1A Oncogene Enhancement of Caspase-2-Mediated Mitochondrial Injury Sensitizes Cells to Macrophage Nitric Oxide-Induced Apoptosis.
J. R. Radke, Z. K. Siddiqui, T. A. Miura, J. M. Routes, and J. L. Cook (2008)
J. Immunol. 180, 8272-8279
   Abstract »    Full Text »    PDF »
c-Myc and Caspase-2 Are Involved in Activating Bax during Cytotoxic Drug-induced Apoptosis.
X. Cao, R. L. Bennett, and W. S. May (2008)
J. Biol. Chem. 283, 14490-14496
   Abstract »    Full Text »    PDF »
Down-regulation of Caspase-2 by Rottlerin via Protein Kinase C-{delta}-Independent Pathway.
A. Basu, B. Adkins, and C. Basu (2008)
Cancer Res. 68, 2795-2802
   Abstract »    Full Text »    PDF »
A role for caspase 2 and PIDD in the process of p53-mediated apoptosis.
N. Baptiste-Okoh, A. M. Barsotti, and C. Prives (2008)
PNAS 105, 1937-1942
   Abstract »    Full Text »    PDF »
SMAC Mimetics Sensitize Nonsteroidal Anti-inflammatory Drug Induced Apoptosis by Promoting Caspase-3 Mediated Cytochrome c Release.
A. Bank, P. Wang, C. Du, J. Yu, and L. Zhang (2008)
Cancer Res. 68, 276-284
   Abstract »    Full Text »    PDF »
Caspase-9-induced Mitochondrial Disruption through Cleavage of Anti-apoptotic BCL-2 Family Members.
M. Chen, A. D. Guerrero, L. Huang, Z. Shabier, M. Pan, T.-H. Tan, and J. Wang (2007)
J. Biol. Chem. 282, 33888-33895
   Abstract »    Full Text »    PDF »
GSK-3beta acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis.
C.-F. Lin, C.-L. Chen, C.-W. Chiang, M.-S. Jan, W.-C. Huang, and Y.-S. Lin (2007)
J. Cell Sci. 120, 2935-2943
   Abstract »    Full Text »    PDF »
Caspase-8-mediated apoptosis induced by oxidative stress is independent of the intrinsic pathway and dependent on cathepsins.
H. K. Baumgartner, J. V. Gerasimenko, C. Thorne, L. H. Ashurst, S. L. Barrow, M. A. Chvanov, S. Gillies, D. N. Criddle, A. V. Tepikin, O. H. Petersen, et al. (2007)
Am J Physiol Gastrointest Liver Physiol 293, G296-G307
   Abstract »    Full Text »    PDF »
Intersectin-1s Regulates the Mitochondrial Apoptotic Pathway in Endothelial Cells.
S. A. Predescu, D. N. Predescu, I. Knezevic, I. K. Klein, and A. B. Malik (2007)
J. Biol. Chem. 282, 17166-17178
   Abstract »    Full Text »    PDF »
Ceramide kinase uses ceramide provided by ceramide transport protein: localization to organelles of eicosanoid synthesis.
N. F. Lamour, R. V. Stahelin, D. S. Wijesinghe, M. Maceyka, E. Wang, J. C. Allegood, A. H. Merrill Jr., W. Cho, and C. E. Chalfant (2007)
J. Lipid Res. 48, 1293-1304
   Abstract »    Full Text »    PDF »
Suppression of Endoplasmic Reticulum Stress-induced Caspase Activation and Cell Death by the Overexpression of Bcl-xL or Bcl-2.
Y. Murakami, E. Aizu-Yokota, Y. Sonoda, S. Ohta, and T. Kasahara (2007)
J. Biochem. 141, 401-410
   Abstract »    Full Text »    PDF »
The Nuclear Receptor Interacting Factor-3 Transcriptional Coregulator Mediates Rapid Apoptosis in Breast Cancer Cells through Direct and Bystander-Mediated Events.
S. Das, J. C. Nwachukwu, D. Li, A. I. Vulin, S. Martinez-Caballero, K. W. Kinnally, and H. H. Samuels (2007)
Cancer Res. 67, 1775-1782
   Abstract »    Full Text »    PDF »
Loss of Mcl-1 Protein and Inhibition of Electron Transport Chain Together Induce Anoxic Cell Death.
J. K. Brunelle, E. H. Shroff, H. Perlman, A. Strasser, C. T. Moraes, R. A. Flavell, N. N. Danial, B. Keith, C. B. Thompson, and N. S. Chandel (2007)
Mol. Cell. Biol. 27, 1222-1235
   Abstract »    Full Text »    PDF »
Docetaxel-induced apoptosis in melanoma cells is dependent on activation of caspase-2.
N. M. Mhaidat, Y. Wang, K. A. Kiejda, X. D. Zhang, and P. Hersey (2007)
Mol. Cancer Ther. 6, 752-761
   Abstract »    Full Text »    PDF »
Cordyceps sinensis Mycelium Extract Induces Human Premyelocytic Leukemia Cell Apoptosis Through Mitochondrion Pathway.
Q. X. Zhang and J. Y. Wu (2007)
Experimental Biology and Medicine 232, 52-57
   Abstract »    Full Text »    PDF »
Loss of Caspase-9 Reveals Its Essential Role for Caspase-2 Activation and Mitochondrial Membrane Depolarization.
A. K. Samraj, D. Sohn, K. Schulze-Osthoff, and I. Schmitz (2007)
Mol. Biol. Cell 18, 84-93
   Abstract »    Full Text »    PDF »
The Marine Product Cephalostatin 1 Activates an Endoplasmic Reticulum Stress-specific and Apoptosome-independent Apoptotic Signaling Pathway.
N. Lopez-Anton, A. Rudy, N. Barth, L. M. Schmitz, G. R. Pettit, K. Schulze-Osthoff, V. M. Dirsch, and A. M. Vollmar (2006)
J. Biol. Chem. 281, 33078-33086
   Abstract »    Full Text »    PDF »
Silibinin activates p53-caspase 2 pathway and causes caspase-mediated cleavage of Cip1/p21 in apoptosis induction in bladder transitional-cell papilloma RT4 cells: evidence for a regulatory loop between p53 and caspase 2.
A. Tyagi, R. P. Singh, C. Agarwal, and R. Agarwal (2006)
Carcinogenesis 27, 2269-2280
   Abstract »    Full Text »    PDF »
Differential contribution of Puma and Noxa in dual regulation of p53-mediated apoptotic pathways.
T. Shibue, S. Suzuki, H. Okamoto, H. Yoshida, Y. Ohba, A. Takaoka, and T. Taniguchi (2006)
EMBO J. 25, 4952-4962
   Abstract »    Full Text »    PDF »
Thrombin-induced endothelial microparticle generation: identification of a novel pathway involving ROCK-II activation by caspase-2.
C. Sapet, S. Simoncini, B. Loriod, D. Puthier, J. Sampol, C. Nguyen, F. Dignat-George, and F. Anfosso (2006)
Blood 108, 1868-1876
   Abstract »    Full Text »    PDF »
Uropathogenic Escherichia coli Induces Extrinsic and Intrinsic Cascades To Initiate Urothelial Apoptosis.
D. J. Klumpp, M. T. Rycyk, M. C. Chen, P. Thumbikat, S. Sengupta, and A. J. Schaeffer (2006)
Infect. Immun. 74, 5106-5113
   Abstract »    Full Text »    PDF »
Inducible Resistance of Tumor Cells to Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Receptor 2-Mediated Apoptosis by Generation of a Blockade at the Death Domain Function..
Y. Li, H. Wang, Z. Wang, S. Makhija, D. Buchsbaum, A. LoBuglio, R. Kimberly, and T. Zhou (2006)
Cancer Res. 66, 8520-8528
   Abstract »    Full Text »    PDF »
Caspases and calpain are independent mediators of cisplatin-induced endothelial cell necrosis.
B. Dursun, Z. He, H. Somerset, D.-J. Oh, S. Faubel, and C. L. Edelstein (2006)
Am J Physiol Renal Physiol 291, F578-F587
   Abstract »    Full Text »    PDF »
Caspase-2 is activated at the CD95 death-inducing signaling complex in the course of CD95-induced apoptosis.
I. N. Lavrik, A. Golks, S. Baumann, and P. H. Krammer (2006)
Blood 108, 559-565
   Abstract »    Full Text »    PDF »
The Effects of Branched-Chain Amino Acids on Canine Neoplastic Cell Proliferation and Death.
J. J. Wakshlag, F. A. Kallfelz, R. R. Wakshlag, and G. M. Davenport (2006)
J. Nutr. 136, 2007S-2010S
   Full Text »    PDF »
Caspase-2 Triggers Bax-Bak-dependent and -independent Cell Death in Colon Cancer Cells Treated with Resveratrol.
J. Mohan, A. A. Gandhi, B. C. Bhavya, R. Rashmi, D. Karunagaran, R. Indu, and T. R. Santhoshkumar (2006)
J. Biol. Chem. 281, 17599-17611
   Abstract »    Full Text »    PDF »
Heat Shock Induces Apoptosis Independently of Any Known Initiator Caspase-activating Complex.
R. S. Milleron and S. B. Bratton (2006)
J. Biol. Chem. 281, 16991-17000
   Abstract »    Full Text »    PDF »
Apoptosis Induction by Activator Protein 2{alpha} Involves Transcriptional Repression of Bcl-2.
N. Wajapeyee, R. Britto, H. M. Ravishankar, and K. Somasundaram (2006)
J. Biol. Chem. 281, 16207-16219
   Abstract »    Full Text »    PDF »
Internal Ribosome Entry Site-mediated Translation of Apaf-1, but Not XIAP, Is Regulated during UV-induced Cell Death.
N. H. Ungureanu, M. Cloutier, S. M. Lewis, N. de Silva, J. D. Blais, J. C. Bell, and M. Holcik (2006)
J. Biol. Chem. 281, 15155-15163
   Abstract »    Full Text »    PDF »
Caspase 2 Activity Contributes to the Initial Wave of Germ Cell Apoptosis During the First Round of Spermatogenesis.
S. Zheng, T. T. Turner, and J. J. Lysiak (2006)
Biol Reprod 74, 1026-1033
   Abstract »    Full Text »    PDF »
Cytochrome c-related caspase-3 activation determines treatment response and relapse in childhood precursor B-cell ALL.
L. H. Meyer, L. Karawajew, M. Schrappe, W.-D. Ludwig, K.-M. Debatin, and K. Stahnke (2006)
Blood 107, 4524-4531
   Abstract »    Full Text »    PDF »
PS-341 (Bortezomib) Induces Lysosomal Cathepsin B Release and a Caspase-2-dependent Mitochondrial Permeabilization and Apoptosis in Human Pancreatic Cancer Cells.
B. H. Y. Yeung, D.-C. Huang, and F. A. Sinicrope (2006)
J. Biol. Chem. 281, 11923-11932
   Abstract »    Full Text »    PDF »
Inhibition of ADP/ATP Exchange in Receptor-Interacting Protein-Mediated Necrosis.
V. Temkin, Q. Huang, H. Liu, H. Osada, and R. M. Pope (2006)
Mol. Cell. Biol. 26, 2215-2225
   Abstract »    Full Text »    PDF »
Treatment with an Inhibitory Monoclonal Antibody to Mouse Factor B Protects Mice from Induction of Apoptosis and Renal Ischemia/Reperfusion Injury.
J. M. Thurman, P. A. Royer, D. Ljubanovic, B. Dursun, A. M. Lenderink, C. L. Edelstein, and V. M. Holers (2006)
J. Am. Soc. Nephrol. 17, 707-715
   Abstract »    Full Text »    PDF »
Triapine (3-aninopyridine-2-carboxaldehyde thiosemicarbazone) Induces Apoptosis in Ovarian Cancer Cells.
A. B. Alvero, W. Chen, A. C. Sartorelli, P. Schwartz, T. Rutherford, and G. Mor (2006)
Reproductive Sciences 13, 145-152
   Abstract »    PDF »
Targeting endoplasmic reticulum protein transport: a novel strategy to kill malignant B cells and overcome fludarabine resistance in CLL.
J. S. Carew, S. T. Nawrocki, Y. V. Krupnik, K. Dunner Jr, D. J. McConkey, M. J. Keating, and P. Huang (2006)
Blood 107, 222-231
   Abstract »    Full Text »    PDF »
Essential Roles of the Bcl-2 Family of Proteins in Caspase-2-induced Apoptosis.
Z. Gao, Y. Shao, and X. Jiang (2005)
J. Biol. Chem. 280, 38271-38275
   Abstract »    Full Text »    PDF »
Sensitization for {gamma}-Irradiation-Induced Apoptosis by Second Mitochondria-Derived Activator of Caspase.
S. Giagkousiklidis, M. Vogler, M.-A. Westhoff, H. Kasperczyk, K.-M. Debatin, and S. Fulda (2005)
Cancer Res. 65, 10502-10513
   Abstract »    Full Text »    PDF »
Caspase-2, a Novel Lipid Sensor under the Control of Sterol Regulatory Element Binding Protein 2.
E. Logette, C. Le Jossic-Corcos, D. Masson, S. Solier, A. Sequeira-Legrand, I. Dugail, S. Lemaire-Ewing, L. Desoche, E. Solary, and L. Corcos (2005)
Mol. Cell. Biol. 25, 9621-9631
   Abstract »    Full Text »    PDF »
Caspase-2 primes cancer cells for TRAIL-mediated apoptosis by processing procaspase-8.
S. Shin, Y. Lee, W. Kim, H. Ko, H. Choi, and K. Kim (2005)
EMBO J. 24, 3532-3542
   Abstract »    Full Text »    PDF »
Apoptosis caused by p53-induced protein with death domain (PIDD) depends on the death adapter protein RAIDD.
C. Berube, L.-M. Boucher, W. Ma, A. Wakeham, L. Salmena, R. Hakem, W.-C. Yeh, T. W. Mak, and S. Benchimol (2005)
PNAS 102, 14314-14320
   Abstract »    Full Text »    PDF »
Id3 Induces Growth Arrest and Caspase-2-Dependent Apoptosis in B Lymphocyte Progenitors.
B. L. Kee (2005)
J. Immunol. 175, 4518-4527
   Abstract »    Full Text »    PDF »
p53-dependent Caspase-2 Activation in Mitochondrial Release of Apoptosis-inducing Factor and Its Role in Renal Tubular Epithelial Cell Injury.
R. Seth, C. Yang, V. Kaushal, S. V. Shah, and G. P. Kaushal (2005)
J. Biol. Chem. 280, 31230-31239
   Abstract »    Full Text »    PDF »
Decreased PARP and procaspase-2 protein levels are associated with cellular drug resistance in childhood acute lymphoblastic leukemia.
A. Holleman, M. L. d. Boer, K. M. Kazemier, H. B. Beverloo, A. R. M. von Bergh, G. E. Janka-Schaub, and R. Pieters (2005)
Blood 106, 1817-1823
   Abstract »    Full Text »    PDF »
Caspase-12 and Caspase-4 Are Not Required for Caspase-dependent Endoplasmic Reticulum Stress-induced Apoptosis.
E. A. Obeng and L. H. Boise (2005)
J. Biol. Chem. 280, 29578-29587
   Abstract »    Full Text »    PDF »
Doxorubicin Requires the Sequential Activation of Caspase-2, Protein Kinase C{delta}, and c-Jun NH2-terminal Kinase to Induce Apoptosis.
T. Panaretakis, E. Laane, K. Pokrovskaja, A.-C. Bjorklund, A. Moustakas, B. Zhivotovsky, M. Heyman, M. C. Shoshan, and D. Grander (2005)
Mol. Biol. Cell 16, 3821-3831
   Abstract »    Full Text »    PDF »
Bcl-2 Rescues Ceramide- and Etoposide-induced Mitochondrial Apoptosis through Blockage of Caspase-2 Activation.
C.-F. Lin, C.-L. Chen, W.-T. Chang, M.-S. Jan, L.-J. Hsu, R.-H. Wu, Y.-T. Fang, M.-J. Tang, W.-C. Chang, and Y.-S. Lin (2005)
J. Biol. Chem. 280, 23758-23765
   Abstract »    Full Text »    PDF »
RH1 Induces Cellular Damage in an NAD(P)H:Quinone Oxidoreductase 1-Dependent Manner: Relationship between DNA Cross-linking, Cell Cycle Perturbations, and Apoptosis.
D. L. Dehn, S. H. Inayat-Hussain, and D. Ross (2005)
J. Pharmacol. Exp. Ther. 313, 771-779
   Abstract »    Full Text »    PDF »
Apoptosis Induced by the Toll-Like Receptor Adaptor TRIF Is Dependent on Its Receptor Interacting Protein Homotypic Interaction Motif.
W. J. Kaiser and M. K. Offermann (2005)
J. Immunol. 174, 4942-4952
   Abstract »    Full Text »    PDF »
Highly specific and accurate selection of siRNAs for high-throughput functional assays.
J. Santoyo, J. M. Vaquerizas, and J. Dopazo (2005)
Bioinformatics 21, 1376-1382
   Abstract »    Full Text »    PDF »
Proapoptotic BAX and BAK control multiple initiator caspases.
A. Ruiz-Vela, J. T. Opferman, E. H.-Y. Cheng, and S. J. Korsmeyer (2005)
EMBO Rep. 6, 379-385
   Abstract »    Full Text »    PDF »
Bovine lactoferricin selectively induces apoptosis in human leukemia and carcinoma cell lines.
J. S. Mader, J. Salsman, D. M. Conrad, and D. W. Hoskin (2005)
Mol. Cancer Ther. 4, 612-624
   Abstract »    Full Text »    PDF »
Identification and functional significance of genes regulated by structurally different histone deacetylase inhibitors.
M. J. Peart, G. K. Smyth, R. K. van Laar, D. D. Bowtell, V. M. Richon, P. A. Marks, A. J. Holloway, and R. W. Johnstone (2005)
PNAS 102, 3697-3702
   Abstract »    Full Text »    PDF »
Select forms of tumor cell apoptosis induce dendritic cell maturation.
S. Demaria, F. R. Santori, B. Ng, L. Liebes, S. C. Formenti, and S. Vukmanovic (2005)
J. Leukoc. Biol. 77, 361-368
   Abstract »    Full Text »    PDF »
Rapamycin and UCN-01 synergistically induce apoptosis in human leukemia cells through a process that is regulated by the Raf-1/MEK/ERK, Akt, and JNK signal transduction pathways.
M. Hahn, W. Li, C. Yu, M. Rahmani, P. Dent, and S. Grant (2005)
Mol. Cancer Ther. 4, 457-470
   Abstract »    Full Text »    PDF »
Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo.
P. Lingor, P. Koeberle, S. Kugler, and M. Bahr (2005)
Brain 128, 550-558
   Abstract »    Full Text »    PDF »
Caspases. Regulating Death Since the Origin of Life.
M. Sanmartin, L. Jaroszewski, N. V. Raikhel, and E. Rojo (2005)
Plant Physiology 137, 841-847
   Full Text »    PDF »
Functional Role of Caspases in Heat-Induced Testicular Germ Cell Apoptosis.
Y. Vera, S. Rodriguez, M. Castanares, Y. Lue, V. Atienza, C. Wang, R. S. Swerdloff, and A. P. Sinha Hikim (2005)
Biol Reprod 72, 516-522
   Abstract »    Full Text »    PDF »
A Novel Caspase-2 Complex Containing TRAF2 and RIP1.
M. Lamkanfi, K. D'hondt, L. Vande Walle, M. van Gurp, G. Denecker, J. Demeulemeester, M. Kalai, W. Declercq, X. Saelens, and P. Vandenabeele (2005)
J. Biol. Chem. 280, 6923-6932
   Abstract »    Full Text »    PDF »
Inhibition of Macroautophagy Triggers Apoptosis.
P. Boya, R.-A. Gonzalez-Polo, N. Casares, J.-L. Perfettini, P. Dessen, N. Larochette, D. Metivier, D. Meley, S. Souquere, T. Yoshimori, et al. (2005)
Mol. Cell. Biol. 25, 1025-1040
   Abstract »    Full Text »    PDF »
Caspase-Dependent and -Independent Neuronal Death: Two Distinct Pathways to Neuronal Injury.
L. Stefanis (2005)
Neuroscientist 11, 50-62
   Abstract »    PDF »
Newcomers in the process of mitochondrial permeabilization.
S. Lucken-Ardjomande and J.-C. Martinou (2005)
J. Cell Sci. 118, 473-483
   Abstract »    Full Text »    PDF »
The Birc6 (Bruce) gene regulates p53 and the mitochondrial pathway of apoptosis and is essential for mouse embryonic development.
J. Ren, M. Shi, R. Liu, Q.-H. Yang, T. Johnson, W. C. Skarnes, and C. Du (2005)
PNAS 102, 565-570
   Abstract »    Full Text »    PDF »
Filtering of Ineffective siRNAs and Improved siRNA Design Tool.
S. M. Yiu, P. W. H. Wong, T.W. Lam, Y.C. Mui, H. F. Kung, M. Lin, and Y. T. Cheung (2005)
Bioinformatics 21, 144-151
   Abstract »    Full Text »    PDF »
A Death Receptor-associated Anti-apoptotic Protein, BRE, Inhibits Mitochondrial Apoptotic Pathway.
Q. Li, A. K.-K. Ching, B. C.-L. Chan, S. K.-Y. Chow, P.-L. Lim, T. C.-Y. Ho, W.-K. Ip, C.-K. Wong, C. W.-K. Lam, K. K.-H. Lee, et al. (2004)
J. Biol. Chem. 279, 52106-52116
   Abstract »    Full Text »    PDF »
Hsp72 Inhibits Apoptosis Upstream of the Mitochondria and Not through Interactions with Apaf-1.
R. Steel, J. P. Doherty, K. Buzzard, N. Clemons, C. J. Hawkins, and R. L. Anderson (2004)
J. Biol. Chem. 279, 51490-51499
   Abstract »    Full Text »    PDF »
Caspase-2 Permeabilizes the Outer Mitochondrial Membrane and Disrupts the Binding of Cytochrome c to Anionic Phospholipids.
M. Enoksson, J. D. Robertson, V. Gogvadze, P. Bu, A. Kropotov, B. Zhivotovsky, and S. Orrenius (2004)
J. Biol. Chem. 279, 49575-49578
   Abstract »    Full Text »    PDF »
Proteasome Inhibitor PS-341 Induces Apoptosis through Induction of Endoplasmic Reticulum Stress-Reactive Oxygen Species in Head and Neck Squamous Cell Carcinoma Cells.
A. Fribley, Q. Zeng, and C.-Y. Wang (2004)
Mol. Cell. Biol. 24, 9695-9704
   Abstract »    Full Text »    PDF »
The Mitochondrial Death Pathway and Cardiac Myocyte Apoptosis.
M. T. Crow, K. Mani, Y.-J. Nam, and R. N. Kitsis (2004)
Circ. Res. 95, 957-970
   Abstract »    Full Text »    PDF »
Apoptosis Protease Activator Protein-1 Expression Is Dispensable for Response of Human Melanoma Cells to Distinct Proapoptotic Agents.
M. Zanon, A. Piris, I. Bersani, C. Vegetti, A. Molla, A. Scarito, and A. Anichini (2004)
Cancer Res. 64, 7386-7394
   Abstract »    Full Text »    PDF »
Components of the Cell Death Machine and Drug Sensitivity of the National Cancer Institute Cell Line Panel.
P. A. Svingen, D. Loegering, J. Rodriquez, X. W. Meng, P. W. Mesner Jr., S. Holbeck, A. Monks, S. Krajewski, D. A. Scudiero, E. A. Sausville, et al. (2004)
Clin. Cancer Res. 10, 6807-6820
   Abstract »    Full Text »    PDF »
A20 protects endothelial cells from TNF-, Fas-, and NK-mediated cell death by inhibiting caspase 8 activation.
S. Daniel, M. B. Arvelo, V. I. Patel, C. R. Longo, G. Shrikhande, T. Shukri, J. Mahiou, D. W. Sun, C. Mottley, S. T. Grey, et al. (2004)
Blood 104, 2376-2384
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882