Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 298 (5595): 1029-1033

Copyright © 2002 by the American Association for the Advancement of Science

Cytoprotective Role of Ca2+- Activated K+ Channels in the Cardiac Inner Mitochondrial Membrane

Wenhong Xu,1 Yongge Liu,2 Sheng Wang,2 Todd McDonald,3 Jennifer E. Van Eyk,3 Agnieszka Sidor,1 Brian O'Rourke1*

Ion channels on the mitochondrial inner membrane influence cell function in specific ways that can be detrimental or beneficial to cell survival. At least one type of potassium (K+) channel, the mitochondrial adenosine triphosphate-sensitive K+ channel (mitoKATP), is an important effector of protection against necrotic and apoptotic cell injury after ischemia. Here another channel with properties similar to the surface membrane calcium-activated K+ channel was found on the mitochondrial inner membrane (mitoKCa) of guinea pig ventricular cells. MitoKCa significantly contributed to mitochondrial K+ uptake of the myocyte, and an opener of mitoKCa protected hearts against infarction.

1 Institute of Molecular Cardiobiology, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
2 Maryland Research Laboratories, Otsuka Maryland Research Institute, Rockville, MD 20850, USA.
3 Department of Physiology, Queen's University, Kingston, Ontario, K7L 3N6 Canada.
*   To whom correspondence should be addressed. E-mail: bor{at}

Mitochondrial Channels: Ion Fluxes and More.
I. Szabo and M. Zoratti (2014)
Physiol Rev 94, 519-608
   Abstract »    Full Text »    PDF »
mitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location.
H. Singh, R. Lu, J. C. Bopassa, A. L. Meredith, E. Stefani, and L. Toro (2013)
PNAS 110, 10836-10841
   Abstract »    Full Text »    PDF »
Large-conductance Ca2+-activated potassium channel in mitochondria of endothelial EA.hy926 cells.
P. Bednarczyk, A. Koziel, W. Jarmuszkiewicz, and A. Szewczyk (2013)
Am J Physiol Heart Circ Physiol 304, H1415-H1427
   Abstract »    Full Text »    PDF »
Reduced vascular smooth muscle BK channel current underlies heart failure-induced vasoconstriction in mice.
E. Wan, J. S. Kushner, S. Zakharov, X.-w. Nui, N. Chudasama, C. Kelly, M. Waase, D. Doshi, G. Liu, S. Iwata, et al. (2013)
FASEB J 27, 1859-1867
   Abstract »    Full Text »    PDF »
Pharmacological activation of mitochondrial BKCa channels protects isolated cardiomyocytes against simulated reperfusion-induced injury.
G. H. Borchert, M. Hlavackova, and F. Kolar (2013)
Experimental Biology and Medicine 238, 233-241
   Abstract »    Full Text »    PDF »
Intracellular BKCa (iBKCa) channels.
H. Singh, E. Stefani, and L. Toro (2012)
J. Physiol. 590, 5937-5947
   Abstract »    Full Text »    PDF »
Mitochondrial ROMK Channel Is a Molecular Component of MitoKATP.
D. B. Foster, A. S. Ho, J. Rucker, A. O. Garlid, L. Chen, A. Sidor, K. D. Garlid, and B. O'Rourke (2012)
Circ. Res. 111, 446-454
   Abstract »    Full Text »    PDF »
Desflurane-induced post-conditioning against myocardial infarction is mediated by calcium-activated potassium channels: role of the mitochondrial permeability transition pore.
J. Stumpner, M. Lange, A. Beck, T. M. Smul, C. A. Lotz, F. Kehl, N. Roewer, and A. Redel (2012)
Br. J. Anaesth. 108, 594-601
   Abstract »    Full Text »    PDF »
Hydrogen sulfide preconditioning or neutrophil depletion attenuates ischemia-reperfusion-induced mitochondrial dysfunction in rat small intestine.
Y. Liu, T. Kalogeris, M. Wang, M. Zuidema, Q. Wang, H. Dai, M. J. Davis, M. A. Hill, and R. J. Korthuis (2012)
Am J Physiol Gastrointest Liver Physiol 302, G44-G54
   Abstract »    Full Text »    PDF »
Single Channel Characterization of the Mitochondrial Ryanodine Receptor in Heart Mitoplasts.
S.-Y. Ryu, G. Beutner, K. W. Kinnally, R. T. Dirksen, and S.-S. Sheu (2011)
J. Biol. Chem. 286, 21324-21329
   Abstract »    Full Text »    PDF »
Mitochondrial BKCa channels contribute to protection of cardiomyocytes isolated from chronically hypoxic rats.
G. H. Borchert, C. Yang, and F. Kolar (2011)
Am J Physiol Heart Circ Physiol 300, H507-H513
   Abstract »    Full Text »    PDF »
Erythropoietin enhances hydrogen peroxide-mediated dilatation of canine coronary collateral arterioles during myocardial ischemia in dogs in vivo.
T. Yada, H. Shimokawa, O. Hiramatsu, M. Satoh, N. Kashihara, A. Takaki, M. Goto, Y. Ogasawara, and F. Kajiya (2010)
Am J Physiol Heart Circ Physiol 299, H1928-H1935
   Abstract »    Full Text »    PDF »
Ischaemic and morphine-induced post-conditioning: impact of mKCa channels.
R. Huhn, A. Heinen, N. C. Weber, W. Schlack, B. Preckel, and M. W. Hollmann (2010)
Br. J. Anaesth. 105, 589-595
   Abstract »    Full Text »    PDF »
Antecedent hydrogen sulfide elicits an anti-inflammatory phenotype in postischemic murine small intestine: role of BK channels.
M. Y. Zuidema, Y. Yang, M. Wang, T. Kalogeris, Y. Liu, C. J. Meininger, M. A. Hill, M. J. Davis, and R. J. Korthuis (2010)
Am J Physiol Heart Circ Physiol 299, H1554-H1567
   Abstract »    Full Text »    PDF »
Temporary Sequestration of Potassium by Mitochondria in Astrocytes.
M. G. Kozoriz, J. Church, M. A. Ozog, C. C. Naus, and C. Krebs (2010)
J. Biol. Chem. 285, 31107-31119
   Abstract »    Full Text »    PDF »
Regulation of AMPA Receptor Currents by Mitochondrial ATP-Sensitive K+ Channels in Anoxic Turtle Neurons.
G. Zivkovic and L. T. Buck (2010)
J Neurophysiol 104, 1913-1922
   Abstract »    Full Text »    PDF »
The SR-mitochondria interaction: a new player in cardiac pathophysiology.
M. Ruiz-Meana, C. Fernandez-Sanz, and D. Garcia-Dorado (2010)
Cardiovasc Res 88, 30-39
   Abstract »    Full Text »    PDF »
Perspectives on: Local calcium signaling: Subcellular Ca2+ signaling in the heart: the role of ryanodine receptor sensitivity.
B. L. Prosser, C. W. Ward, and W. J. Lederer (2010)
J. Gen. Physiol. 136, 135-142
   Full Text »    PDF »
Membrane Trafficking of Large Conductance Calcium-activated Potassium Channels Is Regulated by Alternative Splicing of a Transplantable, Acidic Trafficking Motif in the RCK1-RCK2 Linker.
L. Chen, O. Jeffries, I. C. M. Rowe, Z. Liang, H.-G. Knaus, P. Ruth, and M. J. Shipston (2010)
J. Biol. Chem. 285, 23265-23275
   Abstract »    Full Text »    PDF »
Mitochondrial matrix K+ flux independent of large-conductance Ca2+-activated K+ channel opening.
M. Aldakkak, D. F. Stowe, Q. Cheng, W.-M. Kwok, and A. K. S. Camara (2010)
Am J Physiol Cell Physiol 298, C530-C541
   Abstract »    Full Text »    PDF »
Zn2+ Activates Large Conductance Ca2+-activated K+ Channel via an Intracellular Domain.
S. Hou, L. E. Vigeland, G. Zhang, R. Xu, M. Li, S. H. Heinemann, and T. Hoshi (2010)
J. Biol. Chem. 285, 6434-6442
   Abstract »    Full Text »    PDF »
Increased Potassium Conductance of Brain Mitochondria Induces Resistance to Permeability Transition by Enhancing Matrix Volume.
M. J. Hansson, S. Morota, M. Teilum, G. Mattiasson, H. Uchino, and E. Elmer (2010)
J. Biol. Chem. 285, 741-750
   Abstract »    Full Text »    PDF »
Hypoxia Inducible Factor-2{alpha} Stabilization and Maxi-K+ Channel {beta}1-Subunit Gene Repression by Hypoxia in Cardiac Myocytes: Role in Preconditioning.
L. Bautista, M. J. Castro, J. Lopez-Barneo, and A. Castellano (2009)
Circ. Res. 104, 1364-1372
   Abstract »    Full Text »    PDF »
Modulation of BKCa Channel Gating by Endogenous Signaling Molecules.
S. Hou, S. H. Heinemann, and T. Hoshi (2009)
Physiology 24, 26-35
   Abstract »    Full Text »    PDF »
Soluble epoxide hydrolase plays an essential role in angiotensin II-induced cardiac hypertrophy.
D. Ai, W. Pang, N. Li, M. Xu, P. D. Jones, J. Yang, Y. Zhang, N. Chiamvimonvat, J. Y.-J. Shyy, B. D. Hammock, et al. (2009)
PNAS 106, 564-569
   Abstract »    Full Text »    PDF »
Mitochondrial potassium channel Kv1.3 mediates Bax-induced apoptosis in lymphocytes.
I. Szabo, J. Bock, H. Grassme, M. Soddemann, B. Wilker, F. Lang, M. Zoratti, and E. Gulbins (2008)
PNAS 105, 14861-14866
   Abstract »    Full Text »    PDF »
6-[4-(1-Cyclohexyl-1H-tetrazol-5-yl)butoxy]-3,4-dihydro-2-(1H)quinolinone (Cilostazol), a Phosphodiesterase Type 3 Inhibitor, Reduces Infarct Size via Activation of Mitochondrial Ca2+-Activated K+ Channels in Rabbit Hearts.
M. Fukasawa, H. Nishida, T. Sato, M. Miyazaki, and H. Nakaya (2008)
J. Pharmacol. Exp. Ther. 326, 100-104
   Abstract »    Full Text »    PDF »
Mechanisms Underlying Acute Protection From Cardiac Ischemia-Reperfusion Injury.
E. Murphy and C. Steenbergen (2008)
Physiol Rev 88, 581-609
   Abstract »    Full Text »    PDF »
Infarct size limitation by adrenomedullin: protein kinase A but not PI3-kinase is linked to mitochondrial KCa channels.
H. Nishida, T. Sato, M. Miyazaki, and H. Nakaya (2008)
Cardiovasc Res 77, 398-405
   Abstract »    Full Text »    PDF »
The Small Molecule NS11021 Is a Potent and Specific Activator of Ca2+-Activated Big-Conductance K+ Channels.
B. H. Bentzen, A. Nardi, K. Calloe, L. S. Madsen, S.-P. Olesen, and M. Grunnet (2007)
Mol. Pharmacol. 72, 1033-1044
   Abstract »    Full Text »    PDF »
Reverse electron flow-induced ROS production is attenuated by activation of mitochondrial Ca2+-sensitive K+ channels.
A. Heinen, M. Aldakkak, D. F. Stowe, S. S. Rhodes, M. L. Riess, S. G. Varadarajan, and A. K. S. Camara (2007)
Am J Physiol Heart Circ Physiol 293, H1400-H1407
   Abstract »    Full Text »    PDF »
Dynamic changes in nitric oxide and mitochondrial oxidative stress with site-dependent differential tissue response during anoxic preconditioning in rat heart.
D. V. Cuong, M. Warda, N. Kim, W. S. Park, J. H. Ko, E. Kim, and J. Han (2007)
Am J Physiol Heart Circ Physiol 293, H1457-H1465
   Abstract »    Full Text »    PDF »
Protein kinase C isoform-dependent modulation of ATP-sensitive K+ channels in mitochondrial inner membrane.
V. Garg and K. Hu (2007)
Am J Physiol Heart Circ Physiol 293, H322-H332
   Abstract »    Full Text »    PDF »
Isoflurane preconditioning uncouples mitochondria and protects against hypoxia-reoxygenation.
M. Ljubkovic, Y. Mio, J. Marinovic, A. Stadnicka, D. C. Warltier, Z. J. Bosnjak, and M. Bienengraeber (2007)
Am J Physiol Cell Physiol 292, C1583-C1590
   Abstract »    Full Text »    PDF »
Pharmacological and physiological stimuli do not promote Ca2+-sensitive K+ channel activity in isolated heart mitochondria.
D. V. Cancherini, B. B. Queliconi, and A. J. Kowaltowski (2007)
Cardiovasc Res 73, 720-728
   Abstract »    Full Text »    PDF »
Mitochondrial Ca2+-induced K+ influx increases respiration and enhances ROS production while maintaining membrane potential.
A. Heinen, A. K. S. Camara, M. Aldakkak, S. S. Rhodes, M. L. Riess, and D. F. Stowe (2007)
Am J Physiol Cell Physiol 292, C148-C156
   Abstract »    Full Text »    PDF »
Regulation of mitochondrial matrix volume.
A. Kaasik, D. Safiulina, A. Zharkovsky, and V. Veksler (2007)
Am J Physiol Cell Physiol 292, C157-C163
   Abstract »    Full Text »    PDF »
Calcium-dependent Spontaneously Reversible Remodeling of Brain Mitochondria.
N. Shalbuyeva, T. Brustovetsky, A. Bolshakov, and N. Brustovetsky (2006)
J. Biol. Chem. 281, 37547-37558
   Abstract »    Full Text »    PDF »
Targeted expression of Kir6.2 in mitochondria confers protection against hypoxic stress.
M. Ljubkovic, J. Marinovic, A. Fuchs, Z. J. Bosnjak, and M. Bienengraeber (2006)
J. Physiol. 577, 17-29
   Abstract »    Full Text »    PDF »
Role of Soluble Epoxide Hydrolase in Postischemic Recovery of Heart Contractile Function.
J. M. Seubert, C. J. Sinal, J. Graves, L. M. DeGraff, J. A. Bradbury, C. R. Lee, K. Goralski, M. A. Carey, A. Luria, J. W. Newman, et al. (2006)
Circ. Res. 99, 442-450
   Abstract »    Full Text »    PDF »
Levosimendan protects against experimental endotoxemic acute renal failure.
R. A. Zager, A. C. Johnson, S. Lund, S. Y. Hanson, and C. K. Abrass (2006)
Am J Physiol Renal Physiol 290, F1453-F1462
   Abstract »    Full Text »    PDF »
Three methionine residues located within the regulator of conductance for K+ (RCK) domains confer oxidative sensitivity to large-conductance Ca2+-activated K+ channels.
L. C. Santarelli, R. Wassef, S. H. Heinemann, and T. Hoshi (2006)
J. Physiol. 571, 329-348
   Abstract »    Full Text »    PDF »
Cardiac mitochondrial preconditioning by Big Ca2+-sensitive K+ channel opening requires superoxide radical generation.
D. F. Stowe, M. Aldakkak, A. K. S. Camara, M. L. Riess, A. Heinen, S. G. Varadarajan, and M.-T. Jiang (2006)
Am J Physiol Heart Circ Physiol 290, H434-H440
   Abstract »    Full Text »    PDF »
Mitochondrial Ion Channels: Gatekeepers of Life and Death.
B. O'Rourke, S. Cortassa, and M. A. Aon (2005)
Physiology 20, 303-315
   Abstract »    Full Text »    PDF »
Cardioprotective effects of estradiol include the activation of large-conductance Ca2+-activated K+ channels in cardiac mitochondria.
S. Ohya, Y. Kuwata, K. Sakamoto, K. Muraki, and Y. Imaizumi (2005)
Am J Physiol Heart Circ Physiol 289, H1635-H1642
   Abstract »    Full Text »    PDF »
Cd2+-induced swelling-contraction dynamics in isolated kidney cortex mitochondria: role of Ca2+ uniporter, K+ cycling, and protonmotive force.
W.-K. Lee, M. Spielmann, U. Bork, and F. Thevenod (2005)
Am J Physiol Cell Physiol 289, C656-C664
   Abstract »    Full Text »    PDF »
A Novel Potassium Channel in Lymphocyte Mitochondria.
I. Szabo, J. Bock, A. Jekle, M. Soddemann, C. Adams, F. Lang, M. Zoratti, and E. Gulbins (2005)
J. Biol. Chem. 280, 12790-12798
   Abstract »    Full Text »    PDF »
Calcium-Activated Potassium Channel Triggers Cardioprotection of Ischemic Preconditioning.
C.-M. Cao, Q. Xia, Q. Gao, M. Chen, and T.-M. Wong (2005)
J. Pharmacol. Exp. Ther. 312, 644-650
   Abstract »    Full Text »    PDF »
Mitochondrial Ca2+-Activated K+ Channels in Cardiac Myocytes: A Mechanism of the Cardioprotective Effect and Modulation by Protein Kinase A.
T. Sato, T. Saito, N. Saegusa, and H. Nakaya (2005)
Circulation 111, 198-203
   Abstract »    Full Text »    PDF »
Testosterone Induces Cytoprotection by Activating ATP-Sensitive K+ Channels in the Cardiac Mitochondrial Inner Membrane.
F. Er, G. Michels, N. Gassanov, F. Rivero, and U. C. Hoppe (2004)
Circulation 110, 3100-3107
   Abstract »    Full Text »    PDF »
Opening of Ca2+-activated K+ channels triggers early and delayed preconditioning against I/R injury independent of NOS in mice.
X. Wang, C. Yin, L. Xi, and R. C. Kukreja (2004)
Am J Physiol Heart Circ Physiol 287, H2070-H2077
   Abstract »    Full Text »    PDF »
Multiprotein complex containing succinate dehydrogenase confers mitochondrial ATP-sensitive K+ channel activity.
H. Ardehali, Z. Chen, Y. Ko, R. Mejia-Alvarez, and E. Marban (2004)
PNAS 101, 11880-11885
   Abstract »    Full Text »    PDF »
A novel mechanism of regulation of cardiac contractility by mitochondrial functional state.
FASEB J 18, 1219-1227
   Abstract »    Full Text »    PDF »
Metabolic Modulation of Potassium Channels.
D. Trauner and R. H. Kramer (2004)
Sci. STKE 2004, pe22
   Abstract »    Full Text »    PDF »
Spontaneous mitochondrial depolarizations are independent of SR Ca2+ release.
C. M. O'Reilly, K. E. Fogarty, R. M. Drummond, R. A. Tuft Jr., and J. V. Walsh (2004)
Am J Physiol Cell Physiol 286, C1139-C1151
   Abstract »    Full Text »    PDF »
BK Channel News: Full Coverage on the Calcium Bowl.
E. G. Moczydlowski (2004)
J. Gen. Physiol. 123, 471-473
   Full Text »    PDF »
Evidence for Mitochondrial K+ Channels and Their Role in Cardioprotection.
B. O'Rourke (2004)
Circ. Res. 94, 420-432
   Abstract »    Full Text »    PDF »
Mitochondrial permeability transition pore opening during myocardial reperfusion--a target for cardioprotection.
A. P Halestrap, S. J Clarke, and S. A Javadov (2004)
Cardiovasc Res 61, 372-385
   Abstract »    Full Text »    PDF »
Activation of K+ channels: an essential pathway in programmed cell death.
C. V. Remillard and J. X.-J. Yuan (2004)
Am J Physiol Lung Cell Mol Physiol 286, L49-L67
   Abstract »    Full Text »    PDF »
Proteomic Analysis of the Mouse Liver Mitochondrial Inner Membrane.
S. Da Cruz, I. Xenarios, J. Langridge, F. Vilbois, P. A. Parone, and J.-C. Martinou (2003)
J. Biol. Chem. 278, 41566-41571
   Abstract »    Full Text »    PDF »
Role of the Mitochondrial Permeability Transition in Myocardial Disease.
J. N. Weiss, P. Korge, H. M. Honda, and P. Ping (2003)
Circ. Res. 93, 292-301
   Abstract »    Full Text »    PDF »
Mitochondrial plasticity in classical ischemic preconditioning--moving beyond the mitochondrial KATP channel.
J. Minners, C. J. McLeod, and M. N. Sack (2003)
Cardiovasc Res 59, 1-6
   Abstract »    Full Text »    PDF »
Matrix volume measurements challenge the existence of diazoxide/glibencamide-sensitive KATP channels in rat mitochondria.
M. Das, J. E Parker, and A. P Halestrap (2003)
J. Physiol. 547, 893-902
   Abstract »    Full Text »    PDF »
Differential Actions of Cardioprotective Agents on the Mitochondrial Death Pathway.
M. Akao, B. O'Rourke, H. Kusuoka, Y. Teshima, S. P. Jones, and E. Marban (2003)
Circ. Res. 92, 195-202
   Abstract »    Full Text »    PDF »
BMJ 325, 1122
   Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882