Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 298 (5597): 1412-1414

Copyright © 2002 by the American Association for the Advancement of Science

Requirement of Hos2 Histone Deacetylase for Gene Activity in Yeast

Amy Wang,1 Siavash K. Kurdistani,12 Michael Grunstein1*

Histone deacetylases, typified by class I Rpd3 in the yeast Saccharomyces cerevisiae, have historically been associated with gene repression. We now demonstrate that Hos2, another member of the class I family, binds to the coding regions of genes primarily during gene activation, when it specifically deacetylates the lysines in H3 and H4 histone tails. Moreover, Hos2 is preferentially associated with genes of high activity genome-wide. We also show that Hos2 and an associated factor, Set3, are necessary for efficient transcription. Therefore, our data indicate that, in contrast to other class I histone deacetylases, Hos2 is directly required for gene activation.

Departments of 1 Biological Chemistry and 2 Pathology and Laboratory Medicine, UCLA School of Medicine and the Molecular Biology Institute, Boyer Hall, University of California, Los Angeles, CA 90095, USA.
*   To whom correspondence should be addressed. E-mail: mg{at}mbi.ucla.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Communication between levels of transcriptional control improves robustness and adaptivity.
A. M. Tsankov, C. R. Brown, M. C. Yu, M. Z. Win, P. A. Silver, and J. M. Casolari (2014)
Mol Syst Biol 2, 65
   Abstract »    Full Text »    PDF »
Two Histone Deacetylases, FfHda1 and FfHda2, Are Important for Fusarium fujikuroi Secondary Metabolism and Virulence.
L. Studt, F. J. Schmidt, L. Jahn, C. M. K. Sieber, L. R. Connolly, E.- M. Niehaus, M. Freitag, H.- U. Humpf, and B. Tudzynski (2013)
Appl. Envir. Microbiol. 79, 7719-7734
   Abstract »    Full Text »    PDF »
Cancers with wrong HATs: the impact of acetylation.
V. Di Cerbo and R. Schneider (2013)
Briefings in Functional Genomics 12, 231-243
   Abstract »    Full Text »    PDF »
Transcriptional repressors: multifaceted regulators of gene expression.
N. Reynolds, A. O'Shaughnessy, and B. Hendrich (2013)
Development 140, 505-512
   Abstract »    Full Text »    PDF »
Requirement for the histone deacetylase Hdac3 for the inflammatory gene expression program in macrophages.
X. Chen, I. Barozzi, A. Termanini, E. Prosperini, A. Recchiuti, J. Dalli, F. Mietton, G. Matteoli, S. Hiebert, and G. Natoli (2012)
PNAS 109, E2865-E2874
   Abstract »    Full Text »    PDF »
The Cryptococcus neoformans Capsule: a Sword and a Shield.
T. R. O'Meara and J. A. Alspaugh (2012)
Clin. Microbiol. Rev. 25, 387-408
   Abstract »    Full Text »    PDF »
Chromatin Modulation at the FLO11 Promoter of Saccharomyces cerevisiae by HDAC and Swi/Snf Complexes.
R. R. Barrales, P. Korber, J. Jimenez, and J. I. Ibeas (2012)
Genetics 191, 791-803
   Abstract »    Full Text »    PDF »
Lactate, a product of glycolytic metabolism, inhibits histone deacetylase activity and promotes changes in gene expression.
T. Latham, L. Mackay, D. Sproul, M. Karim, J. Culley, D. J. Harrison, L. Hayward, P. Langridge-Smith, N. Gilbert, and B. H. Ramsahoye (2012)
Nucleic Acids Res. 40, 4794-4803
   Abstract »    Full Text »    PDF »
The histone deacetylase Hos2 forms an Hsp42-dependent cytoplasmic granule in quiescent yeast cells.
I.-C. Liu, S.-W. Chiu, H.-Y. Lee, and J.-Y. Leu (2012)
Mol. Biol. Cell 23, 1231-1242
   Abstract »    Full Text »    PDF »
Histone acetyltransferases and deacetylases: molecular and clinical implications to gastrointestinal carcinogenesis.
W.-J. Sun, X. Zhou, J.-H. Zheng, M.-D. Lu, J.-Y. Nie, X.-J. Yang, and Z.-Q. Zheng (2012)
Acta Biochim Biophys Sin 44, 80-91
   Abstract »    Full Text »    PDF »
Elongator Protein 3b Negatively Regulates Ribosomal DNA Transcription in African Trypanosomes.
S. Alsford and D. Horn (2011)
Mol. Cell. Biol. 31, 1822-1832
   Abstract »    Full Text »    PDF »
Genetic Analysis Implicates the Set3/Hos2 Histone Deacetylase in the Deposition and Remodeling of Nucleosomes Containing H2A.Z.
M. Hang and M. M. Smith (2011)
Genetics 187, 1053-1066
   Abstract »    Full Text »    PDF »
The Role of Cotranscriptional Histone Methylations.
S. Buratowski and T. Kim (2011)
Cold Spring Harb Symp Quant Biol
   Abstract »    PDF »
Dynamic histone acetylation is critical for cotranscriptional spliceosome assembly and spliceosomal rearrangements.
F. Q. Gunderson, E. C. Merkhofer, and T. L. Johnson (2011)
PNAS 108, 2004-2009
   Abstract »    Full Text »    PDF »
Transcriptional Activation of the General Amino Acid Permease Gene per1 by the Histone Deacetylase Clr6 Is Regulated by Oca2 Kinase.
I. Kaufmann, E. White, A. Azad, S. Marguerat, J. Bahler, and N. J. Proudfoot (2010)
Mol. Cell. Biol. 30, 3396-3410
   Abstract »    Full Text »    PDF »
Stb3 Plays a Role in the Glucose-Induced Transition from Quiescence to Growth in Saccharomyces cerevisiae.
D. Liko, M. K. Conway, D. S. Grunwald, and W. Heideman (2010)
Genetics 185, 797-810
   Abstract »    Full Text »    PDF »
Modularity and directionality in genetic interaction maps.
A. Jaimovich, R. Rinott, M. Schuldiner, H. Margalit, and N. Friedman (2010)
Bioinformatics 26, i228-i236
   Abstract »    Full Text »    PDF »
Rpd3-dependent boundary formation at telomeres by removal of Sir2 substrate.
S. Ehrentraut, J. M. Weber, J. N. Dybowski, D. Hoffmann, and A. E. Ehrenhofer-Murray (2010)
PNAS 107, 5522-5527
   Abstract »    Full Text »    PDF »
A Novel Motif in Fungal Class 1 Histone Deacetylases Is Essential for Growth and Development of Aspergillus.
M. Tribus, I. Bauer, J. Galehr, G. Rieser, P. Trojer, G. Brosch, P. Loidl, H. Haas, and S. Graessle (2010)
Mol. Biol. Cell 21, 345-353
   Abstract »    Full Text »    PDF »
Histone deacetylases facilitate sodium/calcium exchanger up-regulation in adult cardiomyocytes.
S. Chandrasekaran, R. E. Peterson, S. K. Mani, B. Addy, A. L. Buchholz, L. Xu, T. Thiyagarajan, H. Kasiganesan, C. B. Kern, and D. R. Menick (2009)
FASEB J 23, 3851-3864
   Abstract »    Full Text »    PDF »
DNA polymerase {varepsilon}, acetylases and remodellers cooperate to form a specialized chromatin structure at a tRNA insulator.
N. Dhillon, J. Raab, J. Guzzo, S. J. Szyjka, S. Gangadharan, O. M. Aparicio, B. Andrews, and R. T. Kamakaka (2009)
EMBO J. 28, 2583-2600
   Abstract »    Full Text »    PDF »
H3 lysine 4 di- and tri-methylation deposited by cryptic transcription attenuates promoter activation.
M. Pinskaya, S. Gourvennec, and A. Morillon (2009)
EMBO J. 28, 1697-1707
   Abstract »    Full Text »    PDF »
Genetic Identification of Factors That Modulate Ribosomal DNA Transcription in Saccharomyces cerevisiae.
R. D. Hontz, R. O. Niederer, J. M. Johnson, and J. S. Smith (2009)
Genetics 182, 105-119
   Abstract »    Full Text »    PDF »
Hos2p/Set3p Deacetylase Complex Signals Secretory Stress through the Mpk1p Cell Integrity Pathway.
T. J. Cohen, M. J. Mallory, R. Strich, and T.-P. Yao (2008)
Eukaryot. Cell 7, 1191-1199
   Abstract »    Full Text »    PDF »
Demethylation of Histone H3K36 and H3K9 by Rph1: a Vestige of an H3K9 Methylation System in Saccharomyces cerevisiae?.
R. J. Klose, K. E. Gardner, G. Liang, H. Erdjument-Bromage, P. Tempst, and Y. Zhang (2007)
Mol. Cell. Biol. 27, 3951-3961
   Abstract »    Full Text »    PDF »
Distinct Mechanisms Involving Diverse Histone Deacetylases Repress Expression of the Two Gonadotropin {beta}-Subunit Genes in Immature Gonadotropes, and Their Actions Are Overcome by Gonadotropin-Releasing Hormone.
S. Lim, M. Luo, M. Koh, M. Yang, M. N. bin Abdul Kadir, J. H. Tan, Z. Ye, W. Wang, and P. Melamed (2007)
Mol. Cell. Biol. 27, 4105-4120
   Abstract »    Full Text »    PDF »
Specific functions for the fission yeast Sirtuins Hst2 and Hst4 in gene regulation and retrotransposon silencing.
M. Durand-Dubief, I. Sinha, F. Fagerstrom-Billai, C. Bonilla, A. Wright, M. Grunstein, and K. Ekwall (2007)
EMBO J. 26, 2477-2488
   Abstract »    Full Text »    PDF »
Histone Deacetylases RPD3 and HOS2 Regulate the Transcriptional Activation of DNA Damage-Inducible Genes.
V. M. Sharma, R. S. Tomar, A. E. Dempsey, and J. C. Reese (2007)
Mol. Cell. Biol. 27, 3199-3210
   Abstract »    Full Text »    PDF »
Direct Role for the Rpd3 Complex in Transcriptional Induction of the Anaerobic DAN/TIR Genes in Yeast.
O. Sertil, A. Vemula, S. L. Salmon, R. H. Morse, and C. V. Lowry (2007)
Mol. Cell. Biol. 27, 2037-2047
   Abstract »    Full Text »    PDF »
Individual Subunits of the Ssn6-Tup11/12 Corepressor Are Selectively Required for Repression of Different Target Genes.
F. Fagerstrom-Billai, M. Durand-Dubief, K. Ekwall, and A. P. H. Wright (2007)
Mol. Cell. Biol. 27, 1069-1082
   Abstract »    Full Text »    PDF »
Rtt109 Is Required for Proper H3K56 Acetylation: A CHROMATIN MARK ASSOCIATED WITH THE ELONGATING RNA POLYMERASE II.
J. Schneider, P. Bajwa, F. C. Johnson, S. R. Bhaumik, and A. Shilatifard (2006)
J. Biol. Chem. 281, 37270-37274
   Abstract »    Full Text »    PDF »
Simple histone acetylation plays a complex role in the regulation of gene expression..
H. Fukuda, N. Sano, S. Muto, and M. Horikoshi (2006)
Briefings in Functional Genomics 5, 190-208
   Abstract »    Full Text »    PDF »
Yeast homolog of a cancer-testis antigen defines a new transcription complex.
E. Kisseleva-Romanova, R. Lopreiato, A. Baudin-Baillieu, J.-C. Rousselle, L. Ilan, K. Hofmann, A. Namane, C. Mann, and D. Libri (2006)
EMBO J. 25, 3576-3585
   Abstract »    Full Text »    PDF »
Hos2 and Set3 Promote Integration of Ty1 Retrotransposons at tRNA Genes in Saccharomyces cerevisiae.
Z. Mou, A. E. Kenny, and M. J. Curcio (2006)
Genetics 172, 2157-2167
   Abstract »    Full Text »    PDF »
Evidence that Spt2/Sin1, an HMG-Like Factor, Plays Roles in Transcription Elongation, Chromatin Structure, and Genome Stability in Saccharomyces cerevisiae.
A. Nourani, F. Robert, and F. Winston (2006)
Mol. Cell. Biol. 26, 1496-1509
   Abstract »    Full Text »    PDF »
Raf60, a Novel Component of the Rpd3 Histone Deacetylase Complex Required for Rpd3 Activity in Saccharomyces cerevisiae.
A. R. Colina and D. Young (2005)
J. Biol. Chem. 280, 42552-42556
   Abstract »    Full Text »    PDF »
Genome wide analysis of nucleosome density histone acetylation and HDAC function in fission yeast.
M. Wiren, R. A. Silverstein, I. Sinha, J. Walfridsson, H.-m. Lee, P. Laurenson, L. Pillus, D. Robyr, M. Grunstein, and K. Ekwall (2005)
EMBO J. 24, 2906-2918
   Abstract »    Full Text »    PDF »
Histone Deacetylases as Transcriptional Activators? Role Reversal in Inducible Gene Regulation.
I. Nusinzon and C. M. Horvath (2005)
Sci. STKE 2005, re11
   Abstract »    Full Text »    PDF »
Genomic characterization reveals a simple histone H4 acetylation code.
M. F. Dion, S. J. Altschuler, L. F. Wu, and O. J. Rando (2005)
PNAS 102, 5501-5506
   Abstract »    Full Text »    PDF »
Evidence for distinct mechanisms facilitating transcript elongation through chromatin in vivo.
A. Kristjuhan and J. Q. Svejstrup (2004)
EMBO J. 23, 4243-4252
   Abstract »    Full Text »    PDF »
Redundant Mechanisms Are Used by Ssn6-Tup1 in Repressing Chromosomal Gene Transcription in Saccharomyces cerevisiae.
Z. Zhang and J. C. Reese (2004)
J. Biol. Chem. 279, 39240-39250
   Abstract »    Full Text »    PDF »
Activation of the Growth-Differentiation Factor 11 Gene by the Histone Deacetylase (HDAC) Inhibitor Trichostatin A and Repression by HDAC3.
X. Zhang, W. Wharton, Z. Yuan, S.-C. Tsai, N. Olashaw, and E. Seto (2004)
Mol. Cell. Biol. 24, 5106-5118
   Abstract »    Full Text »    PDF »
Distinct localization of histone H3 acetylation and H3-K4 methylation to the transcription start sites in the human genome.
G. Liang, J. C. Y. Lin, V. Wei, C. Yoo, J. C. Cheng, C. T. Nguyen, D. J. Weisenberger, G. Egger, D. Takai, F. A. Gonzales, et al. (2004)
PNAS 101, 7357-7362
   Abstract »    Full Text »    PDF »
Activating and silencing histone modifications form independent allelic switch regions in the imprinted Gnas gene.
T. Li, T. H. Vu, G. A. Ulaner, Y. Yang, J.-F. Hu, and A. R. Hoffman (2004)
Hum. Mol. Genet. 13, 741-750
   Abstract »    Full Text »    PDF »
Acetylation of Yeast Histone H4 Lysine 16: A Switch for Protein Interactions in Heterochromatin and Euchromatin.
C.B. MILLAR, S.K. KURDISTANI, and M. GRUNSTEIN (2004)
Cold Spring Harb Symp Quant Biol 69, 193-200
   Abstract »    PDF »
Tup1-Ssn6 Interacts with Multiple Class I Histone Deacetylases in Vivo.
J. K. Davie, D. G. Edmondson, C. B. Coco, and S. Y. R. Dent (2003)
J. Biol. Chem. 278, 50158-50162
   Abstract »    Full Text »    PDF »
Chromatin acetylation and remodeling at the Cis promoter during STAT5-induced transcription.
A. Rascle and E. Lees (2003)
Nucleic Acids Res. 31, 6882-6890
   Abstract »    Full Text »    PDF »
Post-TATA Binding Protein Recruitment Clearance of Gcn5-Dependent Histone Acetylation within Promoter Nucleosomes.
I. Topalidou, M. Papamichos-Chronakis, and G. Thireos (2003)
Mol. Cell. Biol. 23, 7809-7817
   Abstract »    Full Text »    PDF »
Transcriptional activation via sequential histone H2B ubiquitylation and deubiquitylation, mediated by SAGA-associated Ubp8.
K. W. Henry, A. Wyce, W.-S. Lo, L. J. Duggan, N.C. T. Emre, C.-F. Kao, L. Pillus, A. Shilatifard, M. A. Osley, and S. L. Berger (2003)
Genes & Dev. 17, 2648-2663
   Abstract »    Full Text »    PDF »
Deacetylase Activity Is Required for cAMP Activation of a Subset of CREB Target Genes.
D. M. Fass, J. E. F. Butler, and R. H. Goodman (2003)
J. Biol. Chem. 278, 43014-43019
   Abstract »    Full Text »    PDF »
TRANSCRIPTION: Histones Face the FACT.
J. Q. Svejstrup (2003)
Science 301, 1053-1055
   Abstract »    Full Text »    PDF »
The N-CoR/Histone Deacetylase 3 Complex Is Required for Repression by Thyroid Hormone Receptor.
T. Ishizuka and M. A. Lazar (2003)
Mol. Cell. Biol. 23, 5122-5131
   Abstract »    Full Text »    PDF »
Methylation of Histone H3 by Set2 in Saccharomyces cerevisiae Is Linked to Transcriptional Elongation by RNA Polymerase II.
N. J. Krogan, M. Kim, A. Tong, A. Golshani, G. Cagney, V. Canadien, D. P. Richards, B. K. Beattie, A. Emili, C. Boone, et al. (2003)
Mol. Cell. Biol. 23, 4207-4218
   Abstract »    Full Text »    PDF »
Opposite Role of Yeast ING Family Members in p53-dependent Transcriptional Activation.
A. Nourani, L. Howe, M. G. Pray-Grant, J. L. Workman, P. A. Grant, and J. Cote (2003)
J. Biol. Chem. 278, 19171-19175
   Abstract »    Full Text »    PDF »
STAT5-induced Id-1 transcription involves recruitment of HDAC1 and deacetylation of C/EBP{beta}.
M. Xu, L. Nie, S.-H. Kim, and X.-H. Sun (2003)
EMBO J. 22, 893-904
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882