Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 298 (5601): 2211-2213

Copyright © 2002 by the American Association for the Advancement of Science

Role of Melanopsin in Circadian Responses to Light

Norman F. Ruby,1* Thomas J. Brennan,2 Xinmin Xie,2 Vinh Cao,1 Paul Franken,1 H. Craig Heller,1 Bruce F. O'Hara1*

Melanopsin has been proposed as an important photoreceptive molecule for the mammalian circadian system. Its importance in this role was tested in melanopsin knockout mice. These mice entrained to a light/dark cycle, phase-shifted after a light pulse, and increased circadian period when light intensity increased. Induction of the immediate-early gene c-fos was observed after a nighttime light pulse in both wild-type and knockout mice. However, the magnitude of these behavioral responses in knockout mice was 40% lower than in wild-type mice. Although melanopsin is not essential for the circadian clock to receive photic input, it contributes significantly to the magnitude of photic responses.

1 Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA.
2 Deltagen, Inc., Redwood City, CA 94063, USA.
*   To whom correspondence should be addressed. E-mail: ruby{at}stanford.edu, bfo{at}stanford.edu.



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Comparison of the isomerization mechanisms of human melanopsin and invertebrate and vertebrate rhodopsins.
S. Rinaldi, F. Melaccio, S. Gozem, F. Fanelli, and M. Olivucci (2014)
PNAS 111, 1714-1719
   Abstract »    Full Text »    PDF »
Assessing Rod, Cone, and Melanopsin Contributions to Human Pupil Flicker Responses.
P. A. Barrionuevo, N. Nicandro, J. J. McAnany, A. J. Zele, P. Gamlin, and D. Cao (2014)
Invest. Ophthalmol. Vis. Sci. 55, 719-727
   Abstract »    Full Text »    PDF »
Irradiance encoding in the suprachiasmatic nuclei by rod and cone photoreceptors.
H. C. van Diepen, A. Ramkisoensing, S. N. Peirson, R. G. Foster, and J. H. Meijer (2013)
FASEB J 27, 4204-4212
   Abstract »    Full Text »    PDF »
Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration.
G. Esquiva, P. Lax, and N. Cuenca (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4605-4618
   Abstract »    Full Text »    PDF »
Human melanopsin forms a pigment maximally sensitive to blue light ({lambda}max {approx} 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades.
H. J. Bailes and R. J. Lucas (2013)
Proc R Soc B 280, 20122987
   Abstract »    Full Text »    PDF »
Metabolism and the Circadian Clock Converge.
K. Eckel-Mahan and P. Sassone-Corsi (2013)
Physiol Rev 93, 107-135
   Abstract »    Full Text »    PDF »
Human phase response curve to a single 6.5 h pulse of short-wavelength light.
M. Ruger, M. A. St Hilaire, G. C. Brainard, S.-B. S. Khalsa, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley (2013)
J. Physiol. 591, 353-363
   Abstract »    Full Text »    PDF »
Circadian and Wake-Dependent Effects on the Pupil Light Reflex in Response to Narrow-Bandwidth Light Pulses.
M. Munch, L. Leon, S. V. Crippa, and A. Kawasaki (2012)
Invest. Ophthalmol. Vis. Sci. 53, 4546-4555
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function.
T. M. Schmidt, M. T. H. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia (2011)
J. Neurosci. 31, 16094-16101
   Abstract »    Full Text »    PDF »
A Synthetic Optogenetic Transcription Device Enhances Blood-Glucose Homeostasis in Mice.
H. Ye, M. D.-E. Baba, R.-W. Peng, and M. Fussenegger (2011)
Science 332, 1565-1568
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive (Melanopsin) Retinal Ganglion Cell Function in Glaucoma.
B. Feigl, D. Mattes, R. Thomas, and A. J. Zele (2011)
Invest. Ophthalmol. Vis. Sci. 52, 4362-4367
   Abstract »    Full Text »    PDF »
Multiple hypothalamic cell populations encoding distinct visual information.
T. M. Brown, J. Wynne, H. D. Piggins, and R. J. Lucas (2011)
J. Physiol. 589, 1173-1194
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive Retinal Ganglion Cells.
M. T. H. Do and K.-W. Yau (2010)
Physiol Rev 90, 1547-1581
   Abstract »    Full Text »    PDF »
Postnatal Development and Functional Adaptations of the Melanopsin Photoreceptive System in the Albino Mouse Retina.
I. Gonzalez-Menendez, F. Contreras, R. Cernuda-Cernuda, I. Provencio, and J. M. Garcia-Fernandez (2010)
Invest. Ophthalmol. Vis. Sci. 51, 4840-4847
   Abstract »    Full Text »    PDF »
Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses.
S.-i. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi (2010)
Proc R Soc B 277, 2485-2492
   Abstract »    Full Text »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
Increased Late Night Response to Light Controls the Circadian Pacemaker in a Nocturnal Primate.
M. Perret, D. Gomez, A. Barbosa, F. Aujard, and M. Thery (2010)
J Biol Rhythms 25, 186-196
   Abstract »    PDF »
Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light.
J. J. Gooley, S. M. W. Rajaratnam, G. C. Brainard, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley (2010)
Science Translational Medicine 2, 31ra33
   Abstract »    Full Text »    PDF »
Light-Dependent Behavioral Phenotypes in PER3-Deficient Mice.
D. R. van der Veen and S. N. Archer (2010)
J Biol Rhythms 25, 3-8
   Abstract »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Circadian Modulation of Melanopsin-Driven Light Response in Rat Ganglion-Cell Photoreceptors.
S. Weng, K. Y. Wong, and D. M. Berson (2009)
J Biol Rhythms 24, 391-402
   Abstract »    PDF »
A Role for the Clock Gene Per1 in Prostate Cancer.
Q. Cao, S. Gery, A. Dashti, D. Yin, Y. Zhou, J. Gu, and H. P. Koeffler (2009)
Cancer Res. 69, 7619-7625
   Abstract »    Full Text »    PDF »
Differential Expression of Two Distinct Functional Isoforms of Melanopsin (Opn4) in the Mammalian Retina.
S. S. Pires, S. Hughes, M. Turton, Z. Melyan, S. N. Peirson, L. Zheng, M. Kosmaoglou, J. Bellingham, M. E. Cheetham, R. J. Lucas, et al. (2009)
J. Neurosci. 29, 12332-12342
   Abstract »    Full Text »    PDF »
Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
C. M. Altimus, A. D. Guler, K. L. Villa, D. S. McNeill, T. A. LeGates, and S. Hattar (2008)
PNAS 105, 19998-20003
   Abstract »    Full Text »    PDF »
Retina-clock relations dictate nocturnal to diurnal behaviors.
D. S. McNeill, C. M. Altimus, and S. Hattar (2008)
PNAS 105, 12645-12646
   Full Text »    PDF »
Abrupt Shift of the Pattern of Diurnal Variation in Stroke Onset With Daylight Saving Time Transitions.
C. Foerch, H.-W. Korf, H. Steinmetz, M. Sitzer, and for the Arbeitsgruppe Schlaganfall Hessen (ASH) (2008)
Circulation 118, 284-290
   Abstract »    Full Text »    PDF »
Divergent Phenotypes of Vision and Accessory Visual Function in Mice with Visual Cycle Dysfunction (Rpe65rd12) or Retinal Degeneration (rd/rd).
S. Thompson, R. F. Mullins, A. R. Philp, E. M. Stone, and N. Mrosovsky (2008)
Invest. Ophthalmol. Vis. Sci. 49, 2737-2742
   Abstract »    Full Text »    PDF »
Photic Sensitivity Ranges of Hamster Pupillary and Circadian Phase Responses Do Not Overlap.
R. A. Hut, M. Oklejewicz, C. Rieux, and H. M. Cooper (2008)
J Biol Rhythms 23, 37-48
   Abstract »    PDF »
Circadian Light Sensitivity and Rate of Retinal Dark Adaptation in Indoor and Outdoor Workers.
M. Rufiange, C. Beaulieu, P. Lachapelle, and M. Dumont (2007)
J Biol Rhythms 22, 454-457
   PDF »
Responses of Suprachiasmatic Nucleus Neurons to Light and Dark Adaptation: Relative Contributions of Melanopsin and Rod Cone Inputs.
E. Drouyer, C. Rieux, R. A. Hut, and H. M. Cooper (2007)
J. Neurosci. 27, 9623-9631
   Abstract »    Full Text »    PDF »
Synaptic Contact between Melanopsin-Containing Retinal Ganglion Cells and Rod Bipolar Cells.
J. Ostergaard, J. Hannibal, and J. Fahrenkrug (2007)
Invest. Ophthalmol. Vis. Sci. 48, 3812-3820
   Abstract »    Full Text »    PDF »
Synaptic influences on rat ganglion-cell photoreceptors.
K. Y. Wong, F. A. Dunn, D. M. Graham, and D. M. Berson (2007)
J. Physiol. 582, 279-296
   Abstract »    Full Text »    PDF »
Absence of Normal Photic Integration in the Circadian Visual System: Response to Millisecond Light Flashes.
L. Vidal and L. P. Morin (2007)
J. Neurosci. 27, 3375-3382
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Circadian Photoreception in Vertebrates.
S. Doyle and M. Menaker (2007)
Cold Spring Harb Symp Quant Biol 72, 499-508
   Abstract »    PDF »
Multiple Photoreceptors Contribute to Nonimage-forming Visual Functions Predominantly through Melanopsin-containing Retinal Ganglion Cells.
A.D. Guler, C.M. Altimus, J.L. Ecker, and S. Hattar (2007)
Cold Spring Harb Symp Quant Biol 72, 509-515
   Abstract »    PDF »
Dim Light Adaptation Attenuates Acute Melatonin Suppression in Humans.
S. A. Jasser, J. P. Hanifin, M. D. Rollag, and G. C. Brainard (2006)
J Biol Rhythms 21, 394-404
   Abstract »    PDF »
Nonvisual light responses in the Rpe65 knockout mouse: Rod loss restores sensitivity to the melanopsin system.
S. E. Doyle, A. M. Castrucci, M. McCall, I. Provencio, and M. Menaker (2006)
PNAS 103, 10432-10437
   Abstract »    Full Text »    PDF »
Immunohistochemical evidence of a melanopsin cone in human retina..
O. Dkhissi-Benyahya, C. Rieux, R. A. Hut, and H. M. Cooper (2006)
Invest. Ophthalmol. Vis. Sci. 47, 1636-1641
   Abstract »    Full Text »    PDF »
Photons, Clocks, and Consciousness.
G. C. Brainard and J. P. Hanifin (2005)
J Biol Rhythms 20, 314-325
   Abstract »    PDF »
Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
Y. Fu, H. Zhong, M.-H. H. Wang, D.-G. Luo, H.-W. Liao, H. Maeda, S. Hattar, L. J. Frishman, and K.-W. Yau (2005)
PNAS 102, 10339-10344
   Abstract »    Full Text »    PDF »
Rhodopsin Formation in Drosophila Is Dependent on the PINTA Retinoid-Binding Protein.
T. Wang and C. Montell (2005)
J. Neurosci. 25, 5187-5194
   Abstract »    Full Text »    PDF »
PSEUDO-RESPONSE REGULATOR 7 and 9 Are Partially Redundant Genes Essential for the Temperature Responsiveness of the Arabidopsis Circadian Clock.
P. A. Salome and C. R. McClung (2005)
PLANT CELL 17, 791-803
   Abstract »    Full Text »    PDF »
Scotopic Illumination Enhances Entrainment of Circadian Rhythms to Lengthening Light:Dark Cycles.
M. R. Gorman, M. Kendall, and J. A. Elliott (2005)
J Biol Rhythms 20, 38-48
   Abstract »    PDF »
Nasal versus Temporal Illumination of the Human Retina: Effects on Core Body Temperature, Melatonin, and Circadian Phase.
M. Ruger, M. C. M. Gordijn, D. G. M. Beersma, B. de Vries, and S. Daan (2005)
J Biol Rhythms 20, 60-70
   Abstract »    PDF »
Circadian rhythms of behavioral cone sensitivity and long wavelength opsin mRNA expression: a correlation study in zebrafish.
P. Li, S. Temple, Y. Gao, T. J. Haimberger, C. W. Hawryshyn, and L. Li (2005)
J. Exp. Biol. 208, 497-504
   Abstract »    Full Text »    PDF »
Illumination of the Melanopsin Signaling Pathway.
S. Panda, S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch, and T. Jegla (2005)
Science 307, 600-604
   Abstract »    Full Text »    PDF »
Retinal Ganglion Cells Are Autonomous Circadian Oscillators Synthesizing N-Acetylserotonin during the Day.
E. Garbarino-Pico, A. R. Carpentieri, M. A. Contin, M. I. K. Sarmiento, M. A. Brocco, P. Panzetta, R. E. Rosenstein, B. L. Caputto, and M. E. Guido (2004)
J. Biol. Chem. 279, 51172-51181
   Abstract »    Full Text »    PDF »
Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice.
C. L. Thompson, C. P. Selby, R. N. Van Gelder, W. S. Blaner, J. Lee, L. Quadro, K. Lai, M. E. Gottesman, and A. Sancar (2004)
J Biol Rhythms 19, 504-517
   Abstract »    PDF »
Melanopsin Is Expressed in PACAP-Containing Retinal Ganglion Cells of the Human Retinohypothalamic Tract.
J. Hannibal, P. Hindersson, J. Ostergaard, B. Georg, S. Heegaard, P. J. Larsen, and J. Fahrenkrug (2004)
Invest. Ophthalmol. Vis. Sci. 45, 4202-4209
   Abstract »    Full Text »    PDF »
Selective deficits in the circadian light response in mice lacking PACAP.
C. S. Colwell, S. Michel, J. Itri, W. Rodriguez, J. Tam, V. Lelievre, Z. Hu, and J. A. Waschek (2004)
Am J Physiol Regulatory Integrative Comp Physiol 287, R1194-R1201
   Abstract »    Full Text »    PDF »
Classical Photoreceptors Regulate Melanopsin mRNA Levels in the Rat Retina.
K. Sakamoto, C. Liu, and G. Tosini (2004)
J. Neurosci. 24, 9693-9697
   Abstract »    Full Text »    PDF »
Regulation of the Mammalian Circadian Clock by Cryptochrome.
A. Sancar (2004)
J. Biol. Chem. 279, 34079-34082
   Full Text »    PDF »
Light Pulses Do Not Induce C-Fos or Per1 in the SCN of Hamsters That Fail to Reentrain to the Photocycle.
M. T. Barakat, B. F. O'Hara, V. H. Cao, J. E. Larkin, H. C. Heller, and N. F. Ruby (2004)
J Biol Rhythms 19, 287-296
   Abstract »    PDF »
Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans.
C. Gronfier, K. P. Wright Jr., R. E. Kronauer, M. E. Jewett, and C. A. Czeisler (2004)
Am J Physiol Endocrinol Metab 287, E174-E181
   Abstract »    Full Text »    PDF »
High Potassium Treatment Resets the Circadian Oscillator in Xenopus Retinal Photoreceptors.
M. Hasegawa and G. M. Cahill (2004)
J Biol Rhythms 19, 208-215
   Abstract »    PDF »
Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry.
S. He, W. Dong, Q. Deng, S. Weng, and W. Sun (2003)
Science 302, 408-411
   Abstract »    Full Text »    PDF »
Expression of the Blue-Light Receptor Cryptochrome in the Human Retina.
C. L. Thompson, C. B. Rickman, S. J. Shaw, J. N. Ebright, U. Kelly, A. Sancar, and D. W. Rickman (2003)
Invest. Ophthalmol. Vis. Sci. 44, 4515-4521
   Abstract »    Full Text »    PDF »
Clocks, genes and sleep.
M. von Schantz and S. N. Archer (2003)
Journal of the Royal Society of Medicine 96, 486-489
   Full Text »    PDF »
A Broad Role for Melanopsin in Nonvisual Photoreception.
J. J. Gooley, J. Lu, D. Fischer, and C. B. Saper (2003)
J. Neurosci. 23, 7093-7106
   Abstract »    Full Text »    PDF »
Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice.
S. Panda, I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag, A. M. Castrucci, M. T. Pletcher, T. K. Sato, T. Wiltshire, M. Andahazy, et al. (2003)
Science 301, 525-527
   Abstract »    Full Text »    PDF »
Melanopsin, Ganglion-Cell Photoreceptors, and Mammalian Photoentrainment.
M. D. Rollag, D. M. Berson, and I. Provencio (2003)
J Biol Rhythms 18, 227-234
   Abstract »    PDF »
Loss of circadian rhythmicity in aging mPer1-/-mCry2-/- mutant mice.
H. Oster, S. Baeriswyl, G. T.J. van der Horst, and U. Albrecht (2003)
Genes & Dev. 17, 1366-1379
   Abstract »    Full Text »    PDF »
CIRCADIAN RHYTHMS: Circadian Photoreception.
M. Menaker (2003)
Science 299, 213-214
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882