Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 299 (5603): 112-114

Copyright © 2003 by the American Association for the Advancement of Science

Modulation of ATP-Dependent Chromatin-Remodeling Complexes by Inositol Polyphosphates

Xuetong Shen,* Hua Xiao, Ryan Ranallo, Wei-Hua Wu, Carl Wudagger

Eukaryotes use adenosine triphosphate (ATP)-dependent chromatin-remodeling complexes to regulate gene expression. Here, we show that inositol polyphosphates can modulate the activities of several chromatin-remodeling complexes in vitro. Inositol hexakisphosphate (IP6) inhibits nucleosome mobilization by NURF, ISW2, and INO80 complexes. In contrast, nucleosome mobilization by the yeast SWI/SNF complex is stimulated by inositol tetrakisphosphate (IP4) and inositol pentakisphosphate (IP5). We demonstrate that mutations in genes encoding inositol polyphosphate kinases that produce IP4, IP5, and IP6 impair transcription in vivo. These results provide a link between inositol polyphosphates, chromatin remodeling, and gene expression.

Laboratory of Molecular Cell Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4255, USA.
*   Present address: Department of Carcinogenesis, University of Texas MD Anderson Cancer Center, Science Park Research Division, Smithville, TX 78957, USA.

dagger    To whom correspondence should be addressed. E-mail: carlwu{at}

Conformational Stability of Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase (IPK1) Dictates Its Substrate Selectivity.
V. Gosein and G. J. Miller (2013)
J. Biol. Chem. 288, 36788-36795
   Abstract »    Full Text »    PDF »
An evolving understanding of nuclear receptor coregulator proteins.
C. J. Millard, P. J. Watson, L. Fairall, and J. W. R. Schwabe (2013)
J. Mol. Endocrinol. 51, T23-T36
   Abstract »    Full Text »    PDF »
Yeast Phospholipase C Is Required for Normal Acetyl-CoA Homeostasis and Global Histone Acetylation.
L. Galdieri, J. Chang, S. Mehrotra, and A. Vancura (2013)
J. Biol. Chem. 288, 27986-27998
   Abstract »    Full Text »    PDF »
Regulation of Inositol Metabolism Is Fine-tuned by Inositol Pyrophosphates in Saccharomyces cerevisiae.
C. Ye, W. M. M. S. Bandara, and M. L. Greenberg (2013)
J. Biol. Chem. 288, 24898-24908
   Abstract »    Full Text »    PDF »
Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death.
R. Xu, N. Sen, B. D. Paul, A. M. Snowman, F. Rao, M. S. Vandiver, J. Xu, and S. H. Snyder (2013)
Science Signaling 6, ra22
   Abstract »    Full Text »    PDF »
RVBs Are Required for Assembling a Functional TIP60 Complex.
S. Jha, A. Gupta, A. Dar, and A. Dutta (2013)
Mol. Cell. Biol. 33, 1164-1174
   Abstract »    Full Text »    PDF »
Dual function of MIPS1 as a metabolic enzyme and transcriptional regulator.
D. Latrasse, T. Jegu, P.-H. Meng, C. Mazubert, E. Hudik, M. Delarue, C. Charon, M. Crespi, H. Hirt, C. Raynaud, et al. (2013)
Nucleic Acids Res. 41, 2907-2917
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphate Synthesis by Inositol Hexakisphosphate Kinase 1 Is Required for Homologous Recombination Repair.
R. S. Jadav, M. V. L. Chanduri, S. Sengupta, and R. Bhandari (2013)
J. Biol. Chem. 288, 3312-3321
   Abstract »    Full Text »    PDF »
Conformational Changes in Inositol 1,3,4,5,6-Pentakisphosphate 2-Kinase upon Substrate Binding: ROLE OF N-TERMINAL LOBE AND ENANTIOMERIC SUBSTRATE PREFERENCE.
J. I. Banos-Sanz, J. Sanz-Aparicio, H. Whitfield, C. Hamilton, C. A. Brearley, and B. Gonzalez (2012)
J. Biol. Chem. 287, 29237-29249
   Abstract »    Full Text »    PDF »
Direct Modification and Activation of a Nuclear Receptor-PIP2 Complex by the Inositol Lipid Kinase IPMK.
R. D. Blind, M. Suzawa, and H. A. Ingraham (2012)
Science Signaling 5, ra44
   Abstract »    Full Text »    PDF »
Phosphoinositides as Regulators of Protein-Chromatin Interactions.
K. Viiri, M. Maki, and O. Lohi (2012)
Science Signaling 5, pe19
   Abstract »    Full Text »    PDF »
Effect of the Inositol Polyphosphate InsP6 on DNA-PK-Dependent Phosphorylation.
L. Hanakahi (2011)
Mol. Cancer Res. 9, 1366-1376
   Abstract »    Full Text »    PDF »
Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1.
B.-K. Han and S. D. Emr (2011)
Genes & Dev. 25, 984-995
   Abstract »    Full Text »    PDF »
INO80 chromatin remodeling complex promotes the removal of UV lesions by the nucleotide excision repair pathway.
Y. Jiang, X. Wang, S. Bao, R. Guo, D. G. Johnson, X. Shen, and L. Li (2010)
PNAS 107, 17274-17279
   Abstract »    Full Text »    PDF »
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition.
B. Gonzalez, J. I. Banos-Sanz, M. Villate, C. A. Brearley, and J. Sanz-Aparicio (2010)
PNAS 107, 9608-9613
   Abstract »    Full Text »    PDF »
Fission Yeast Iec1-Ino80-Mediated Nucleosome Eviction Regulates Nucleotide and Phosphate Metabolism.
C. J. Hogan, S. Aligianni, M. Durand-Dubief, J. Persson, W. R. Will, J. Webster, L. Wheeler, C. K. Mathews, S. Elderkin, D. Oxley, et al. (2010)
Mol. Cell. Biol. 30, 657-674
   Abstract »    Full Text »    PDF »
NTE1-encoded Phosphatidylcholine Phospholipase B Regulates Transcription of Phospholipid Biosynthetic Genes.
J. P. Fernandez-Murray, G. J. Gaspard, S. A. Jesch, and C. R. McMaster (2009)
J. Biol. Chem. 284, 36034-36046
   Abstract »    Full Text »    PDF »
Coupling Phosphate Homeostasis to Cell Cycle-Specific Transcription: Mitotic Activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead Proteins.
S. Pondugula, D. W. Neef, W. P. Voth, R. P. Darst, A. Dhasarathy, M. M. Reynolds, S. Takahata, D. J. Stillman, and M. P. Kladde (2009)
Mol. Cell. Biol. 29, 4891-4905
   Abstract »    Full Text »    PDF »
Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways.
B. Pinson, S. Vaur, I. Sagot, F. Coulpier, S. Lemoine, and B. Daignan-Fornier (2009)
Genes & Dev. 23, 1399-1407
   Abstract »    Full Text »    PDF »
Differential Roles of the ChiB Chitinase in Autolysis and Cell Death of Aspergillus nidulans.
K.-S. Shin, N.-J. Kwon, Y. H. Kim, H.-S. Park, G.-S. Kwon, and J.-H. Yu (2009)
Eukaryot. Cell 8, 738-746
   Abstract »    Full Text »    PDF »
Characterization of a Selective Inhibitor of Inositol Hexakisphosphate Kinases: USE IN DEFINING BIOLOGICAL ROLES AND METABOLIC RELATIONSHIPS OF INOSITOL PYROPHOSPHATES.
U. Padmanabhan, D. E. Dollins, P. C. Fridy, J. D. York, and C. P. Downes (2009)
J. Biol. Chem. 284, 10571-10582
   Abstract »    Full Text »    PDF »
Identification of myo-Inositol-3-phosphate Synthase Isoforms: CHARACTERIZATION, EXPRESSION, AND PUTATIVE ROLE OF A 16-kDa {gamma}c ISOFORM.
R. S. Seelan, J. Lakshmanan, M. F. Casanova, and R. N. Parthasarathy (2009)
J. Biol. Chem. 284, 9443-9457
   Abstract »    Full Text »    PDF »
Dual Functions for the Schizosaccharomyces pombe Inositol Kinase Ipk1 in Nuclear mRNA Export and Polarized Cell Growth.
B. Sarmah and S. R. Wente (2009)
Eukaryot. Cell 8, 134-146
   Abstract »    Full Text »    PDF »
DNA-Binding and -Bending Activities of SAP30L and SAP30 Are Mediated by a Zinc-Dependent Module and Monophosphoinositides.
K. M. Viiri, J. Janis, T. Siggers, T. Y. K. Heinonen, J. Valjakka, M. L. Bulyk, M. Maki, and O. Lohi (2009)
Mol. Cell. Biol. 29, 342-356
   Abstract »    Full Text »    PDF »
Regulation of Telomere Length by Fatty Acid Elongase 3 in Yeast: INVOLVEMENT OF INOSITOL PHOSPHATE METABOLISM AND Ku70/80 FUNCTION.
S. Ponnusamy, N. L. Alderson, H. Hama, J. Bielawski, J. C. Jiang, R. Bhandari, S. H. Snyder, S. M. Jazwinski, and B. Ogretmen (2008)
J. Biol. Chem. 283, 27514-27524
   Abstract »    Full Text »    PDF »
Evidence for an inositol hexakisphosphate-dependent role for Ku in mammalian nonhomologous end joining that is independent of its role in the DNA-dependent protein kinase.
J. C.Y. Cheung, B. Salerno, and L. A. Hanakahi (2008)
Nucleic Acids Res. 36, 5713-5726
   Abstract »    Full Text »    PDF »
Localization of myo-inositol-1-phosphate synthase to the endosperm in developing seeds of Arabidopsis.
N. Mitsuhashi, M. Kondo, S. Nakaune, M. Ohnishi, M. Hayashi, I. Hara-Nishimura, A. Richardson, H. Fukaki, M. Nishimura, and T. Mimura (2008)
J. Exp. Bot. 59, 3069-3076
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Phospholipase C Regulates Transcription of Msn2p-Dependent Stress-Responsive Genes.
A. Demczuk, N. Guha, P. H. Nguyen, P. Desai, J. Chang, K. Guzinska, J. Rollins, C. C. Ghosh, L. Goodwin, and A. Vancura (2008)
Eukaryot. Cell 7, 967-979
   Abstract »    Full Text »    PDF »
Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models.
B. Mellstrom, M. Savignac, R. Gomez-Villafuertes, and J. R. Naranjo (2008)
Physiol Rev 88, 421-449
   Abstract »    Full Text »    PDF »
A Class II Histone Deacetylase Acts on Newly Synthesized Histones in Tetrahymena.
J. J. Smith, S. E. Torigoe, J. Maxson, L. C. Fish, and E. A. Wiley (2008)
Eukaryot. Cell 7, 471-482
   Abstract »    Full Text »    PDF »
Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases.
J. C. Otto, P. Kelly, S.-T. Chiou, and J. D. York (2007)
PNAS 104, 15653-15658
   Abstract »    Full Text »    PDF »
Plc1p Is Required for SAGA Recruitment and Derepression of Sko1p-regulated Genes.
N. Guha, P. Desai, and A. Vancura (2007)
Mol. Biol. Cell 18, 2419-2428
   Abstract »    Full Text »    PDF »
Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12R{beta}2 expression during human Th1 cell differentiation.
F. A. Letimier, N. Passini, S. Gasparian, E. Bianchi, and L. Rogge (2007)
EMBO J. 26, 1292-1302
   Abstract »    Full Text »    PDF »
Isolation and Characterization of a myo-inositol-1-phosphate Synthase Gene from Yellow Passion Fruit (Passiflora edulis f. flavicarpa) Expressed During Seed Development and Environmental Stress.
E. F. M. Abreu and F. J. L. Aragao (2007)
Ann. Bot. 99, 285-292
   Abstract »    Full Text »    PDF »
The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes.
R. Alvarez-Venegas, M. Sadder, A. Hlavacka, F. Baluska, Y. Xia, G. Lu, A. Firsov, G. Sarath, H. Moriyama, J. G. Dubrovsky, et al. (2006)
PNAS 103, 6049-6054
   Abstract »    Full Text »    PDF »
Expression of FLR1 Transporter Requires Phospholipase C and Is Repressed by Mediator.
C. Romero, P. Desai, N. DeLillo, and A. Vancura (2006)
J. Biol. Chem. 281, 5677-5685
   Abstract »    Full Text »    PDF »
dMi-2 Chromatin Binding and Remodeling Activities Are Regulated by dCK2 Phosphorylation.
K. Bouazoune and A. Brehm (2005)
J. Biol. Chem. 280, 41912-41920
   Abstract »    Full Text »    PDF »
Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus.
T. Strahl, H. Hama, D. B. DeWald, and J. Thorner (2005)
J. Cell Biol. 171, 967-979
   Abstract »    Full Text »    PDF »
Inositol Hexakisphosphate Is Bound in the ADAR2 Core and Required for RNA Editing.
M. R. Macbeth, H. L. Schubert, A. P. VanDemark, A. T. Lingam, C. P. Hill, and B. L. Bass (2005)
Science 309, 1534-1539
   Abstract »    Full Text »    PDF »
Severe Adenine Starvation Activates Ty1 Transcription and Retrotransposition in Saccharomyces cerevisiae.
A.-L. Todeschini, A. Morillon, M. Springer, and P. Lesage (2005)
Mol. Cell. Biol. 25, 7459-7472
   Abstract »    Full Text »    PDF »
Genetic Screens for Enhancers of brahma Reveal Functional Interactions Between the BRM Chromatin-Remodeling Complex and the Delta-Notch Signal Transduction Pathway in Drosophila.
J. A. Armstrong, A. S. Sperling, R. Deuring, L. Manning, S. L. Moseley, O. Papoulas, C. I. Piatek, C. Q. Doe, and J. W. Tamkun (2005)
Genetics 170, 1761-1774
   Abstract »    Full Text »    PDF »
Molecular Definition of a Novel Inositol Polyphosphate Metabolic Pathway Initiated by Inositol 1,4,5-Trisphosphate 3-Kinase Activity in Saccharomyces cerevisiae.
A. M. Seeds, R. J. Bastidas, and J. D. York (2005)
J. Biol. Chem. 280, 27654-27661
   Abstract »    Full Text »    PDF »
Phytic Acid Synthesis and Vacuolar Accumulation in Suspension-Cultured Cells of Catharanthus roseus Induced by High Concentration of Inorganic Phosphate and Cations.
N. Mitsuhashi, M. Ohnishi, Y. Sekiguchi, Y.-U. Kwon, Y.-T. Chang, S.-K. Chung, Y. Inoue, R. J. Reid, H. Yagisawa, and T. Mimura (2005)
Plant Physiology 138, 1607-1614
   Abstract »    Full Text »    PDF »
An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production.
J. P. Frederick, D. Mattiske, J. A. Wofford, L. C. Megosh, L. Y. Drake, S.-T. Chiou, B. L. M. Hogan, and J. D. York (2005)
PNAS 102, 8454-8459
   Abstract »    Full Text »    PDF »
The macro domain is an ADP-ribose binding module.
G. I. Karras, G. Kustatscher, H. R. Buhecha, M. D. Allen, C. Pugieux, F. Sait, M. Bycroft, and A. G. Ladurner (2005)
EMBO J. 24, 1911-1920
   Abstract »    Full Text »    PDF »
Inositol Diphosphate Signaling Regulates Telomere Length.
S. J. York, B. N. Armbruster, P. Greenwell, T. D. Petes, and J. D. York (2005)
J. Biol. Chem. 280, 4264-4269
   Abstract »    Full Text »    PDF »
A Role for Rat Inositol Polyphosphate Kinases rIPK2 and rIPK1 in Inositol Pentakisphosphate and Inositol Hexakisphosphate Production in Rat-1 Cells.
M. Fujii and J. D. York (2005)
J. Biol. Chem. 280, 1156-1164
   Abstract »    Full Text »    PDF »
Cytoplasmic Inositol Hexakisphosphate Production Is Sufficient for Mediating the Gle1-mRNA Export Pathway.
A. L. Miller, M. Suntharalingam, S. L. Johnson, A. Audhya, S. D. Emr, and S. R. Wente (2004)
J. Biol. Chem. 279, 51022-51032
   Abstract »    Full Text »    PDF »
Protocols for Regulation and Study of Diphosphoinositol Polyphosphates.
S. T. Safrany (2004)
Mol. Pharmacol. 66, 1585-1591
   Abstract »    Full Text »    PDF »
A Molecular Basis for Inositol Polyphosphate Synthesis in Drosophila melanogaster.
A. M. Seeds, J. C. Sandquist, E. P. Spana, and J. D. York (2004)
J. Biol. Chem. 279, 47222-47232
   Abstract »    Full Text »    PDF »
Comparative Mechanistic and Substrate Specificity Study of Inositol Polyphosphate 5-Phosphatase Schizosaccharomyces pombe Synaptojanin and SHIP2.
Y. Chi, B. Zhou, W.-Q. Wang, S.-K. Chung, Y.-U. Kwon, Y.-H. Ahn, Y.-T. Chang, Y. Tsujishita, J. H. Hurley, and Z.-Y. Zhang (2004)
J. Biol. Chem. 279, 44987-44995
   Abstract »    Full Text »    PDF »
Regulation of Casein Kinase-2 (CK2) Activity by Inositol Phosphates.
L. Solyakov, K. Cain, B. M. Tracey, R. Jukes, A. M. Riley, B. V. L. Potter, and A. B. Tobin (2004)
J. Biol. Chem. 279, 43403-43410
   Abstract »    Full Text »    PDF »
The Direct Interaction Between ASH2, a Drosophila Trithorax Group Protein, and SKTL, a Nuclear Phosphatidylinositol 4-Phosphate 5-Kinase, Implies a Role for Phosphatidylinositol 4,5-Bisphosphate in Maintaining Transcriptionally Active Chromatin.
M. K. Cheng and A. Shearn (2004)
Genetics 167, 1213-1223
   Abstract »    Full Text »    PDF »
Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity.
B. G. Wen, M. T. Pletcher, M. Warashina, S. H. Choe, N. Ziaee, T. Wiltshire, K. Sauer, and M. P. Cooke (2004)
PNAS 101, 5604-5609
   Abstract »    Full Text »    PDF »
Control of Aldosterone Secretion: A Model for Convergence in Cellular Signaling Pathways.
A. SPAT and L. HUNYADY (2004)
Physiol Rev 84, 489-539
   Abstract »    Full Text »    PDF »
Hypo-osmotic Stress Activates Plc1p-dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Inositol Hexakisphosphate Accumulation in Yeast.
N. M. Perera, R. H. Michell, and S. K. Dove (2004)
J. Biol. Chem. 279, 5216-5226
   Abstract »    Full Text »    PDF »
Analysis of a Mutant Histone H3 That Perturbs the Association of Swi/Snf with Chromatin.
A. A. Duina and F. Winston (2004)
Mol. Cell. Biol. 24, 561-572
   Abstract »    Full Text »    PDF »
PTEN M-CBR3, a Versatile and Selective Regulator of Inositol 1,3,4,5,6-Pentakisphosphate (Ins(1,3,4,5,6)P5): EVIDENCE FOR Ins(1,3,4,5,6)P5 AS A PROLIFERATIVE SIGNAL.
E. A. Orchiston, D. Bennett, N. R. Leslie, R. G. Clarke, L. Winward, C. P. Downes, and S. T. Safrany (2004)
J. Biol. Chem. 279, 1116-1122
   Abstract »    Full Text »    PDF »
Nuclear lipids: key signaling effectors in the nervous system and other tissues.
R. W. Ledeen and G. Wu (2004)
J. Lipid Res. 45, 1-8
   Abstract »    Full Text »    PDF »
Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin.
A. Zewail, M. W. Xie, Y. Xing, L. Lin, P. F. Zhang, W. Zou, J. P. Saxe, and J. Huang (2003)
PNAS 100, 3345-3350
   Abstract »    Full Text »    PDF »
Regulation of Chromatin Remodeling by Inositol Polyphosphates.
D. J. Steger, E. S. Haswell, A. L. Miller, S. R. Wente, and E. K. O'Shea (2003)
Science 299, 114-116
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882