Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 299 (5603): 114-116

Copyright © 2003 by the American Association for the Advancement of Science

Regulation of Chromatin Remodeling by Inositol Polyphosphates

David J. Steger,1 Elizabeth S. Haswell,1* Aimee L. Miller,2 Susan R. Wente,2 Erin K. O'Shea1dagger

Chromatin remodeling is required for efficient transcription of eukaryotic genes. In a genetic selection for budding yeast mutants that were defective in induction of the phosphate-responsive PHO5 gene, we identified mutations in ARG82/IPK2, which encodes a nuclear inositol polyphosphate kinase. In arg82 mutant strains, remodeling of PHO5 promoter chromatin is impaired, and the adenosine triphosphate-dependent chromatin-remodeling complexes SWI/SNF and INO80 are not efficiently recruited to phosphate-responsive promoters. These results suggest a role for the small molecule inositol polyphosphate in the regulation of chromatin remodeling and transcription.

1 Department of Biochemistry and Biophysics, Howard Hughes Medical Institute, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143-0448, USA.
2 Department of Cell and Developmental Biology, Vanderbilt University Medical Center, 3120A MRBIII, Nashville, TN 37212, USA.
*   Present address: Division of Biology, 156-29, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.

dagger    To whom correspondence should be addressed. E-mail: oshea{at}biochem.ucsf.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
The RSC chromatin remodeling complex has a crucial role in the complete remodeler set for yeast PHO5 promoter opening.
S. Musladin, N. Krietenstein, P. Korber, and S. Barbaric (2014)
Nucleic Acids Res. 42, 4270-4282
   Abstract »    Full Text »    PDF »
An evolving understanding of nuclear receptor coregulator proteins.
C. J. Millard, P. J. Watson, L. Fairall, and J. W. R. Schwabe (2013)
J. Mol. Endocrinol. 51, T23-T36
   Abstract »    Full Text »    PDF »
Inositol polyphosphate multikinase is a transcriptional coactivator required for immediate early gene induction.
R. Xu, B. D. Paul, D. R. Smith, R. Tyagi, F. Rao, A. B. Khan, D. J. Blech, M. S. Vandiver, M. M. Harraz, P. Guha, et al. (2013)
PNAS 110, 16181-16186
   Abstract »    Full Text »    PDF »
Yeast Phospholipase C Is Required for Normal Acetyl-CoA Homeostasis and Global Histone Acetylation.
L. Galdieri, J. Chang, S. Mehrotra, and A. Vancura (2013)
J. Biol. Chem. 288, 27986-27998
   Abstract »    Full Text »    PDF »
Regulation of Inositol Metabolism Is Fine-tuned by Inositol Pyrophosphates in Saccharomyces cerevisiae.
C. Ye, W. M. M. S. Bandara, and M. L. Greenberg (2013)
J. Biol. Chem. 288, 24898-24908
   Abstract »    Full Text »    PDF »
Phosphoinositides: Tiny Lipids With Giant Impact on Cell Regulation.
T. Balla (2013)
Physiol Rev 93, 1019-1137
   Abstract »    Full Text »    PDF »
Inositol Polyphosphate Multikinase Is a Coactivator of p53-Mediated Transcription and Cell Death.
R. Xu, N. Sen, B. D. Paul, A. M. Snowman, F. Rao, M. S. Vandiver, J. Xu, and S. H. Snyder (2013)
Science Signaling 6, ra22
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphate Synthesis by Inositol Hexakisphosphate Kinase 1 Is Required for Homologous Recombination Repair.
R. S. Jadav, M. V. L. Chanduri, S. Sengupta, and R. Bhandari (2013)
J. Biol. Chem. 288, 3312-3321
   Abstract »    Full Text »    PDF »
Inositol Pyrophosphates Modulate S Phase Progression after Pheromone-induced Arrest in Saccharomyces cerevisiae.
H. Banfic, A. Bedalov, J. D. York, and D. Visnjic (2013)
J. Biol. Chem. 288, 1717-1725
   Abstract »    Full Text »    PDF »
Differential Transcriptomic Analysis of Spontaneous Lung Tumors in B6C3F1 Mice: Comparison to Human Non-Small Cell Lung Cancer.
A. R. Pandiri, R. C. Sills, V. Ziglioli, T.-V. T. Ton, H.-H. L. Hong, S. A. Lahousse, K. E. Gerrish, S. S. Auerbach, K. R. Shockley, P. R. Bushel, et al. (2012)
Toxicol Pathol 40, 1141-1159
   Abstract »    Full Text »    PDF »
Stochastic steady state gain in a gene expression process with mRNA degradation control.
H. Kuwahara and R. Schwartz (2012)
J R Soc Interface 9, 1589-1598
   Abstract »    Full Text »    PDF »
Direct Modification and Activation of a Nuclear Receptor-PIP2 Complex by the Inositol Lipid Kinase IPMK.
R. D. Blind, M. Suzawa, and H. A. Ingraham (2012)
Science Signaling 5, ra44
   Abstract »    Full Text »    PDF »
Phosphoinositides as Regulators of Protein-Chromatin Interactions.
K. Viiri, M. Maki, and O. Lohi (2012)
Science Signaling 5, pe19
   Abstract »    Full Text »    PDF »
Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae.
P. O. Ljungdahl and B. Daignan-Fornier (2012)
Genetics 190, 885-929
   Abstract »    Full Text »    PDF »
Targeted INO80 enhances subnuclear chromatin movement and ectopic homologous recombination.
F. R. Neumann, V. Dion, L. R. Gehlen, M. Tsai-Pflugfelder, R. Schmid, A. Taddei, and S. M. Gasser (2012)
Genes & Dev. 26, 369-383
   Abstract »    Full Text »    PDF »
In Vivo Role for the Chromatin-remodeling Enzyme SWI/SNF in the Removal of Promoter Nucleosomes by Disassembly Rather Than Sliding.
C. R. Brown, C. Mao, E. Falkovskaia, J. K. Law, and H. Boeger (2011)
J. Biol. Chem. 286, 40556-40565
   Abstract »    Full Text »    PDF »
Effect of the Inositol Polyphosphate InsP6 on DNA-PK-Dependent Phosphorylation.
L. Hanakahi (2011)
Mol. Cancer Res. 9, 1366-1376
   Abstract »    Full Text »    PDF »
Isolation of an activator-dependent, promoter-specific chromatin remodeling factor.
A. H. Ehrensberger and R. D. Kornberg (2011)
PNAS 108, 10115-10120
   Abstract »    Full Text »    PDF »
Phosphoinositide [PI(3,5)P2] lipid-dependent regulation of the general transcriptional regulator Tup1.
B.-K. Han and S. D. Emr (2011)
Genes & Dev. 25, 984-995
   Abstract »    Full Text »    PDF »
Systematic Screen of Schizosaccharomyces pombe Deletion Collection Uncovers Parallel Evolution of the Phosphate Signal Transduction Pathway in Yeasts.
T. C. Henry, J. E. Power, C. L. Kerwin, A. Mohammed, J. S. Weissman, D. M. Cameron, and D. D. Wykoff (2011)
Eukaryot. Cell 10, 198-206
   Abstract »    Full Text »    PDF »
System-Level Analysis of Genes and Functions Affecting Survival During Nutrient Starvation in Saccharomyces cerevisiae.
D. Gresham, V. M. Boer, A. Caudy, N. Ziv, N. J. Brandt, J. D. Storey, and D. Botstein (2011)
Genetics 187, 299-317
   Abstract »    Full Text »    PDF »
In Vitro Reconstitution of PHO5 Promoter Chromatin Remodeling Points to a Role for Activator-Nucleosome Competition In Vivo.
F. Ertel, A. B. Dirac-Svejstrup, C. B. Hertel, D. Blaschke, J. Q. Svejstrup, and P. Korber (2010)
Mol. Cell. Biol. 30, 4060-4076
   Abstract »    Full Text »    PDF »
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase is a distant IPK member with a singular inositide binding site for axial 2-OH recognition.
B. Gonzalez, J. I. Banos-Sanz, M. Villate, C. A. Brearley, and J. Sanz-Aparicio (2010)
PNAS 107, 9608-9613
   Abstract »    Full Text »    PDF »
Role of an Expanded Inositol Transporter Repertoire in Cryptococcus neoformans Sexual Reproduction and Virulence.
C. Xue, T. Liu, L. Chen, W. Li, I. Liu, J. W. Kronstad, A. Seyfang, and J. Heitman (2010)
mBio 1, e00084-10
   Abstract »    Full Text »    PDF »
Fission Yeast Iec1-Ino80-Mediated Nucleosome Eviction Regulates Nucleotide and Phosphate Metabolism.
C. J. Hogan, S. Aligianni, M. Durand-Dubief, J. Persson, W. R. Will, J. Webster, L. Wheeler, C. K. Mathews, S. Elderkin, D. Oxley, et al. (2010)
Mol. Cell. Biol. 30, 657-674
   Abstract »    Full Text »    PDF »
Coupling Phosphate Homeostasis to Cell Cycle-Specific Transcription: Mitotic Activation of Saccharomyces cerevisiae PHO5 by Mcm1 and Forkhead Proteins.
S. Pondugula, D. W. Neef, W. P. Voth, R. P. Darst, A. Dhasarathy, M. M. Reynolds, S. Takahata, D. J. Stillman, and M. P. Kladde (2009)
Mol. Cell. Biol. 29, 4891-4905
   Abstract »    Full Text »    PDF »
Phosphoinositide Signaling: New Tools and Insights.
T. Balla, Z. Szentpetery, and Y. J. Kim (2009)
Physiology 24, 231-244
   Abstract »    Full Text »    PDF »
Metabolic intermediates selectively stimulate transcription factor interaction and modulate phosphate and purine pathways.
B. Pinson, S. Vaur, I. Sagot, F. Coulpier, S. Lemoine, and B. Daignan-Fornier (2009)
Genes & Dev. 23, 1399-1407
   Abstract »    Full Text »    PDF »
Differential Cofactor Requirements for Histone Eviction from Two Nucleosomes at the Yeast PHO84 Promoter Are Determined by Intrinsic Nucleosome Stability.
C. J. Wippo, B. S. Krstulovic, F. Ertel, S. Musladin, D. Blaschke, S. Sturzl, G.-C. Yuan, W. Horz, P. Korber, and S. Barbaric (2009)
Mol. Cell. Biol. 29, 2960-2981
   Abstract »    Full Text »    PDF »
Characterization of a Selective Inhibitor of Inositol Hexakisphosphate Kinases: USE IN DEFINING BIOLOGICAL ROLES AND METABOLIC RELATIONSHIPS OF INOSITOL PYROPHOSPHATES.
U. Padmanabhan, D. E. Dollins, P. C. Fridy, J. D. York, and C. P. Downes (2009)
J. Biol. Chem. 284, 10571-10582
   Abstract »    Full Text »    PDF »
Identification of myo-Inositol-3-phosphate Synthase Isoforms: CHARACTERIZATION, EXPRESSION, AND PUTATIVE ROLE OF A 16-kDa {gamma}c ISOFORM.
R. S. Seelan, J. Lakshmanan, M. F. Casanova, and R. N. Parthasarathy (2009)
J. Biol. Chem. 284, 9443-9457
   Abstract »    Full Text »    PDF »
Dual Functions for the Schizosaccharomyces pombe Inositol Kinase Ipk1 in Nuclear mRNA Export and Polarized Cell Growth.
B. Sarmah and S. R. Wente (2009)
Eukaryot. Cell 8, 134-146
   Abstract »    Full Text »    PDF »
The Transcriptional Coactivators SAGA, SWI/SNF, and Mediator Make Distinct Contributions to Activation of Glucose-repressed Genes.
R. K. Biddick, G. L. Law, K. K. B. Chin, and E. T. Young (2008)
J. Biol. Chem. 283, 33101-33109
   Abstract »    Full Text »    PDF »
Saccharomyces cerevisiae Phospholipase C Regulates Transcription of Msn2p-Dependent Stress-Responsive Genes.
A. Demczuk, N. Guha, P. H. Nguyen, P. Desai, J. Chang, K. Guzinska, J. Rollins, C. C. Ghosh, L. Goodwin, and A. Vancura (2008)
Eukaryot. Cell 7, 967-979
   Abstract »    Full Text »    PDF »
Artificial Recruitment of Mediator by the DNA-Binding Domain of Adr1 Overcomes Glucose Repression of ADH2 Expression.
E. T. Young, C. Tachibana, H.-W. E. Chang, K. M. Dombek, E. M. Arms, and R. Biddick (2008)
Mol. Cell. Biol. 28, 2509-2516
   Abstract »    Full Text »    PDF »
Ca2+-Operated Transcriptional Networks: Molecular Mechanisms and In Vivo Models.
B. Mellstrom, M. Savignac, R. Gomez-Villafuertes, and J. R. Naranjo (2008)
Physiol Rev 88, 421-449
   Abstract »    Full Text »    PDF »
A Class II Histone Deacetylase Acts on Newly Synthesized Histones in Tetrahymena.
J. J. Smith, S. E. Torigoe, J. Maxson, L. C. Fish, and E. A. Wiley (2008)
Eukaryot. Cell 7, 471-482
   Abstract »    Full Text »    PDF »
A Poised Initiation Complex Is Activated by SNF1.
C. Tachibana, R. Biddick, G. L. Law, and E. T. Young (2007)
J. Biol. Chem. 282, 37308-37315
   Abstract »    Full Text »    PDF »
Alterations in an inositol phosphate code through synergistic activation of a G protein and inositol phosphate kinases.
J. C. Otto, P. Kelly, S.-T. Chiou, and J. D. York (2007)
PNAS 104, 15653-15658
   Abstract »    Full Text »    PDF »
Redundancy of Chromatin Remodeling Pathways for the Induction of the Yeast PHO5 Promoter in Vivo.
S. Barbaric, T. Luckenbach, A. Schmid, D. Blaschke, W. Horz, and P. Korber (2007)
J. Biol. Chem. 282, 27610-27621
   Abstract »    Full Text »    PDF »
Chromatin Disassembly from the PHO5 Promoter Is Essential for the Recruitment of the General Transcription Machinery and Coactivators.
M. W. Adkins, S. K. Williams, J. Linger, and J. K. Tyler (2007)
Mol. Cell. Biol. 27, 6372-6382
   Abstract »    Full Text »    PDF »
Structure/Function Analysis of the Phosphatidylinositol-3-Kinase Domain of Yeast Tra1.
A. I. Mutiu, S. M. T. Hoke, J. Genereaux, C. Hannam, K. MacKenzie, O. Jobin-Robitaille, J. Guzzo, J. Cote, B. Andrews, D. B. Haniford, et al. (2007)
Genetics 177, 151-166
   Abstract »    Full Text »    PDF »
Activation of the ADE Genes Requires the Chromatin Remodeling Complexes SAGA and SWI/SNF.
R. N. Koehler, N. Rachfall, and R. J. Rolfes (2007)
Eukaryot. Cell 6, 1474-1485
   Abstract »    Full Text »    PDF »
Plc1p Is Required for SAGA Recruitment and Derepression of Sko1p-regulated Genes.
N. Guha, P. Desai, and A. Vancura (2007)
Mol. Biol. Cell 18, 2419-2428
   Abstract »    Full Text »    PDF »
A role for noncoding transcription in activation of the yeast PHO5 gene.
J. P. Uhler, C. Hertel, and J. Q. Svejstrup (2007)
PNAS 104, 8011-8016
   Abstract »    Full Text »    PDF »
Chromatin remodeling by the SWI/SNF-like BAF complex and STAT4 activation synergistically induce IL-12R{beta}2 expression during human Th1 cell differentiation.
F. A. Letimier, N. Passini, S. Gasparian, E. Bianchi, and L. Rogge (2007)
EMBO J. 26, 1292-1302
   Abstract »    Full Text »    PDF »
The Arabidopsis homolog of trithorax, ATX1, binds phosphatidylinositol 5-phosphate, and the two regulate a common set of target genes.
R. Alvarez-Venegas, M. Sadder, A. Hlavacka, F. Baluska, Y. Xia, G. Lu, A. Firsov, G. Sarath, H. Moriyama, J. G. Dubrovsky, et al. (2006)
PNAS 103, 6049-6054
   Abstract »    Full Text »    PDF »
Snf1-Dependent and Snf1-Independent Pathways of Constitutive ADH2 Expression in Saccharomyces cerevisiae.
V. Voronkova, N. Kacherovsky, C. Tachibana, D. Yu, and E. T. Young (2006)
Genetics 172, 2123-2138
   Abstract »    Full Text »    PDF »
Expression of FLR1 Transporter Requires Phospholipase C and Is Repressed by Mediator.
C. Romero, P. Desai, N. DeLillo, and A. Vancura (2006)
J. Biol. Chem. 281, 5677-5685
   Abstract »    Full Text »    PDF »
dMi-2 Chromatin Binding and Remodeling Activities Are Regulated by dCK2 Phosphorylation.
K. Bouazoune and A. Brehm (2005)
J. Biol. Chem. 280, 41912-41920
   Abstract »    Full Text »    PDF »
Yeast phosphatidylinositol 4-kinase, Pik1, has essential roles at the Golgi and in the nucleus.
T. Strahl, H. Hama, D. B. DeWald, and J. Thorner (2005)
J. Cell Biol. 171, 967-979
   Abstract »    Full Text »    PDF »
A Mammalian Chromatin Remodeling Complex with Similarities to the Yeast INO80 Complex.
J. Jin, Y. Cai, T. Yao, A. J. Gottschalk, L. Florens, S. K. Swanson, J. L. Gutierrez, M. K. Coleman, J. L. Workman, A. Mushegian, et al. (2005)
J. Biol. Chem. 280, 41207-41212
   Abstract »    Full Text »    PDF »
Inositol polyphosphate multikinase is a nuclear PI3-kinase with transcriptional regulatory activity.
A. C. Resnick, A. M. Snowman, B. N. Kang, K. J. Hurt, S. H. Snyder, and A. Saiardi (2005)
PNAS 102, 12783-12788
   Abstract »    Full Text »    PDF »
Inositol Hexakisphosphate Is Bound in the ADAR2 Core and Required for RNA Editing.
M. R. Macbeth, H. L. Schubert, A. P. VanDemark, A. T. Lingam, C. P. Hill, and B. L. Bass (2005)
Science 309, 1534-1539
   Abstract »    Full Text »    PDF »
Severe Adenine Starvation Activates Ty1 Transcription and Retrotransposition in Saccharomyces cerevisiae.
A.-L. Todeschini, A. Morillon, M. Springer, and P. Lesage (2005)
Mol. Cell. Biol. 25, 7459-7472
   Abstract »    Full Text »    PDF »
Generation of phytate-free seeds in Arabidopsis through disruption of inositol polyphosphate kinases.
J. Stevenson-Paulik, R. J. Bastidas, S.-T. Chiou, R. A. Frye, and J. D. York (2005)
PNAS 102, 12612-12617
   Abstract »    Full Text »    PDF »
An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway.
H.-W. Shin, M. Hayashi, S. Christoforidis, S. Lacas-Gervais, S. Hoepfner, M. R. Wenk, J. Modregger, S. Uttenweiler-Joseph, M. Wilm, A. Nystuen, et al. (2005)
J. Cell Biol. 170, 607-618
   Abstract »    Full Text »    PDF »
Genetic Screens for Enhancers of brahma Reveal Functional Interactions Between the BRM Chromatin-Remodeling Complex and the Delta-Notch Signal Transduction Pathway in Drosophila.
J. A. Armstrong, A. S. Sperling, R. Deuring, L. Manning, S. L. Moseley, O. Papoulas, C. I. Piatek, C. Q. Doe, and J. W. Tamkun (2005)
Genetics 170, 1761-1774
   Abstract »    Full Text »    PDF »
Molecular Definition of a Novel Inositol Polyphosphate Metabolic Pathway Initiated by Inositol 1,4,5-Trisphosphate 3-Kinase Activity in Saccharomyces cerevisiae.
A. M. Seeds, R. J. Bastidas, and J. D. York (2005)
J. Biol. Chem. 280, 27654-27661
   Abstract »    Full Text »    PDF »
An intracellular phosphate buffer filters transient fluctuations in extracellular phosphate levels.
M. R. Thomas and E. K. O'Shea (2005)
PNAS 102, 9565-9570
   Abstract »    Full Text »    PDF »
Plc1p, Arg82p, and Kcs1p, Enzymes Involved in Inositol Pyrophosphate Synthesis, Are Essential for Phosphate Regulation and Polyphosphate Accumulation in Saccharomyces cerevisiae.
C. Auesukaree, H. Tochio, M. Shirakawa, Y. Kaneko, and S. Harashima (2005)
J. Biol. Chem. 280, 25127-25133
   Abstract »    Full Text »    PDF »
An essential role for an inositol polyphosphate multikinase, Ipk2, in mouse embryogenesis and second messenger production.
J. P. Frederick, D. Mattiske, J. A. Wofford, L. C. Megosh, L. Y. Drake, S.-T. Chiou, B. L. M. Hogan, and J. D. York (2005)
PNAS 102, 8454-8459
   Abstract »    Full Text »    PDF »
The macro domain is an ADP-ribose binding module.
G. I. Karras, G. Kustatscher, H. R. Buhecha, M. D. Allen, C. Pugieux, F. Sait, M. Bycroft, and A. G. Ladurner (2005)
EMBO J. 24, 1911-1920
   Abstract »    Full Text »    PDF »
A Systematic High-Throughput Screen of a Yeast Deletion Collection for Mutants Defective in PHO5 Regulation.
S. Huang and E. K. O'Shea (2005)
Genetics 169, 1859-1871
   Abstract »    Full Text »    PDF »
Inositol Diphosphate Signaling Regulates Telomere Length.
S. J. York, B. N. Armbruster, P. Greenwell, T. D. Petes, and J. D. York (2005)
J. Biol. Chem. 280, 4264-4269
   Abstract »    Full Text »    PDF »
A Role for Rat Inositol Polyphosphate Kinases rIPK2 and rIPK1 in Inositol Pentakisphosphate and Inositol Hexakisphosphate Production in Rat-1 Cells.
M. Fujii and J. D. York (2005)
J. Biol. Chem. 280, 1156-1164
   Abstract »    Full Text »    PDF »
Cytoplasmic Inositol Hexakisphosphate Production Is Sufficient for Mediating the Gle1-mRNA Export Pathway.
A. L. Miller, M. Suntharalingam, S. L. Johnson, A. Audhya, S. D. Emr, and S. R. Wente (2004)
J. Biol. Chem. 279, 51022-51032
   Abstract »    Full Text »    PDF »
Protocols for Regulation and Study of Diphosphoinositol Polyphosphates.
S. T. Safrany (2004)
Mol. Pharmacol. 66, 1585-1591
   Abstract »    Full Text »    PDF »
A Molecular Basis for Inositol Polyphosphate Synthesis in Drosophila melanogaster.
A. M. Seeds, J. C. Sandquist, E. P. Spana, and J. D. York (2004)
J. Biol. Chem. 279, 47222-47232
   Abstract »    Full Text »    PDF »
Comparative Mechanistic and Substrate Specificity Study of Inositol Polyphosphate 5-Phosphatase Schizosaccharomyces pombe Synaptojanin and SHIP2.
Y. Chi, B. Zhou, W.-Q. Wang, S.-K. Chung, Y.-U. Kwon, Y.-H. Ahn, Y.-T. Chang, Y. Tsujishita, J. H. Hurley, and Z.-Y. Zhang (2004)
J. Biol. Chem. 279, 44987-44995
   Abstract »    Full Text »    PDF »
Regulation of Casein Kinase-2 (CK2) Activity by Inositol Phosphates.
L. Solyakov, K. Cain, B. M. Tracey, R. Jukes, A. M. Riley, B. V. L. Potter, and A. B. Tobin (2004)
J. Biol. Chem. 279, 43403-43410
   Abstract »    Full Text »    PDF »
Biography of Erin K. O'Shea.
M. Marino (2004)
PNAS 101, 14312-14314
   Full Text »    PDF »
Sfp1 is a stress- and nutrient-sensitive regulator of ribosomal protein gene expression.
R. M. Marion, A. Regev, E. Segal, Y. Barash, D. Koller, N. Friedman, and E. K. O'Shea (2004)
PNAS 101, 14315-14322
   Abstract »    Full Text »    PDF »
Polyanions and the Proteome.
L. S. Jones, B. Yazzie, and C. R. Middaugh (2004)
Mol. Cell. Proteomics 3, 746-769
   Abstract »    Full Text »    PDF »
Recruitment of the NuA4 complex poises the PHO5 promoter for chromatin remodeling and activation.
A. Nourani, R. T. Utley, S. Allard, and J. Cote (2004)
EMBO J. 23, 2597-2607
   Abstract »    Full Text »    PDF »
The Direct Interaction Between ASH2, a Drosophila Trithorax Group Protein, and SKTL, a Nuclear Phosphatidylinositol 4-Phosphate 5-Kinase, Implies a Role for Phosphatidylinositol 4,5-Bisphosphate in Maintaining Transcriptionally Active Chromatin.
M. K. Cheng and A. Shearn (2004)
Genetics 167, 1213-1223
   Abstract »    Full Text »    PDF »
Control of Stochasticity in Eukaryotic Gene Expression.
J. M. Raser and E. K. O'Shea (2004)
Science 304, 1811-1814
   Abstract »    Full Text »    PDF »
Inositol (1,4,5) trisphosphate 3 kinase B controls positive selection of T cells and modulates Erk activity.
B. G. Wen, M. T. Pletcher, M. Warashina, S. H. Choe, N. Ziaee, T. Wiltshire, K. Sauer, and M. P. Cooke (2004)
PNAS 101, 5604-5609
   Abstract »    Full Text »    PDF »
Hypo-osmotic Stress Activates Plc1p-dependent Phosphatidylinositol 4,5-Bisphosphate Hydrolysis and Inositol Hexakisphosphate Accumulation in Yeast.
N. M. Perera, R. H. Michell, and S. K. Dove (2004)
J. Biol. Chem. 279, 5216-5226
   Abstract »    Full Text »    PDF »
Analysis of a Mutant Histone H3 That Perturbs the Association of Swi/Snf with Chromatin.
A. A. Duina and F. Winston (2004)
Mol. Cell. Biol. 24, 561-572
   Abstract »    Full Text »    PDF »
Nuclear lipids: key signaling effectors in the nervous system and other tissues.
R. W. Ledeen and G. Wu (2004)
J. Lipid Res. 45, 1-8
   Abstract »    Full Text »    PDF »
Targeted cytosine methylation for in vivo detection of protein-DNA interactions.
C. D. Carvin, A. Dhasarathy, L. B. Friesenhahn, W. J. Jessen, and M. P. Kladde (2003)
PNAS 100, 7743-7748
   Abstract »    Full Text »    PDF »
Novel functions of the phosphatidylinositol metabolic pathway discovered by a chemical genomics screen with wortmannin.
A. Zewail, M. W. Xie, Y. Xing, L. Lin, P. F. Zhang, W. Zou, J. P. Saxe, and J. Huang (2003)
PNAS 100, 3345-3350
   Abstract »    Full Text »    PDF »
Modulation of ATP-Dependent Chromatin-Remodeling Complexes by Inositol Polyphosphates.
X. Shen, H. Xiao, R. Ranallo, W.-H. Wu, and C. Wu (2003)
Science 299, 112-114
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882