Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 299 (5604): 245-247

Copyright © 2003 by the American Association for the Advancement of Science

Diminished Pupillary Light Reflex at High Irradiances in Melanopsin-Knockout Mice

R. J. Lucas,1*dagger S. Hattar,2* M. Takao,3 D. M. Berson,3 R. G. Foster,1 K.-W. Yau2dagger

In the mammalian retina, a small subset of retinal ganglion cells (RGCs) are intrinsically photosensitive, express the opsin-like protein melanopsin, and project to brain nuclei involved in non-image-forming visual functions such as pupillary light reflex and circadian photoentrainment. We report that in mice with the melanopsin gene ablated, RGCs retrograde-labeled from the suprachiasmatic nuclei were no longer intrinsically photosensitive, although their number, morphology, and projections were unchanged. These animals showed a pupillary light reflex indistinguishable from that of the wild type at low irradiances, but at high irradiances the reflex was incomplete, a pattern that suggests that the melanopsin-associated system and the classical rod/cone system are complementary in function.

1 Department of Integrative and Molecular Neuroscience, Division of Neuroscience and Psychological Medicine, Faculty of Medicine, Imperial College London, Charing Cross Campus, St. Dunstans Road, London W6 8RF, UK.
2 Howard Hughes Medical Institute and Department of Neuroscience, Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA.
3 Department of Neuroscience, Brown University, Providence, RI 02912, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: r.j.lucas{at}ic.ac.uk, kwyau{at}mail.jhmi.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells.
X. Zhao, B. K. Stafford, A. L. Godin, W. M. King, and K. Y. Wong (2014)
J. Physiol. 592, 1619-1636
   Abstract »    Full Text »    PDF »
Assessing Rod, Cone, and Melanopsin Contributions to Human Pupil Flicker Responses.
P. A. Barrionuevo, N. Nicandro, J. J. McAnany, A. J. Zele, P. Gamlin, and D. Cao (2014)
Invest. Ophthalmol. Vis. Sci. 55, 719-727
   Abstract »    Full Text »    PDF »
Enhancing Performance While Avoiding Damage: A Contribution of Macular Pigment.
J. M. Stringham and D. M. Snodderly (2013)
Invest. Ophthalmol. Vis. Sci. 54, 6298-6306
   Abstract »    Full Text »    PDF »
Impairment of Intrinsically Photosensitive Retinal Ganglion Cells Associated With Late Stages of Retinal Degeneration.
G. Esquiva, P. Lax, and N. Cuenca (2013)
Invest. Ophthalmol. Vis. Sci. 54, 4605-4618
   Abstract »    Full Text »    PDF »
Differential regulation of feeding rhythms through a multiple-photoreceptor system in an avian model of blindness.
D. J. Valdez, P. S. Nieto, N. M. Diaz, E. Garbarino-Pico, and M. E. Guido (2013)
FASEB J 27, 2702-2712
   Abstract »    Full Text »    PDF »
Studying the Effect of Iris Mechanics on the Pupillary Light Reflex Using Brimonidine-Induced Anisocoria.
Y. Chen and R. H. Kardon (2013)
Invest. Ophthalmol. Vis. Sci. 54, 2951-2958
   Abstract »    Full Text »    PDF »
Human melanopsin forms a pigment maximally sensitive to blue light ({lambda}max {approx} 479 nm) supporting activation of Gq/11 and Gi/o signalling cascades.
H. J. Bailes and R. J. Lucas (2013)
Proc R Soc B 280, 20122987
   Abstract »    Full Text »    PDF »
Reversal of end-stage retinal degeneration and restoration of visual function by photoreceptor transplantation.
M. S. Singh, P. Charbel Issa, R. Butler, C. Martin, D. M. Lipinski, S. Sekaran, A. R. Barnard, and R. E. MacLaren (2013)
PNAS 110, 1101-1106
   Abstract »    Full Text »    PDF »
Melanopsin and Rod-Cone Photoreceptors Play Different Roles in Mediating Pupillary Light Responses during Exposure to Continuous Light in Humans.
J. J. Gooley, I. Ho Mien, M. A. St. Hilaire, S.-C. Yeo, E. C.-P. Chua, E. van Reen, C. J. Hanley, J. T. Hull, C. A. Czeisler, and S. W. Lockley (2012)
J. Neurosci. 32, 14242-14253
   Abstract »    Full Text »    PDF »
Chromatic Pupillometry Dissects Function of the Three Different Light-Sensitive Retinal Cell Populations in RPE65 Deficiency.
B. Lorenz, E. Strohmayr, S. Zahn, C. Friedburg, M. Kramer, M. Preising, and K. Stieger (2012)
Invest. Ophthalmol. Vis. Sci. 53, 5641-5652
   Abstract »    Full Text »    PDF »
Circadian and Wake-Dependent Effects on the Pupil Light Reflex in Response to Narrow-Bandwidth Light Pulses.
M. Munch, L. Leon, S. V. Crippa, and A. Kawasaki (2012)
Invest. Ophthalmol. Vis. Sci. 53, 4546-4555
   Abstract »    Full Text »    PDF »
Human Nonvisual Responses to Simultaneous Presentation of Blue and Red Monochromatic Light.
C. Papamichael, D. J. Skene, and V. L. Revell (2012)
J Biol Rhythms 27, 70-78
   Abstract »    Full Text »    PDF »
Melanopsin and Mechanisms of Non-visual Ocular Photoreception.
T. Sexton, E. Buhr, and R. N. Van Gelder (2012)
J. Biol. Chem. 287, 1649-1656
   Abstract »    Full Text »    PDF »
Effect of Circadian Clock Gene Mutations on Nonvisual Photoreception in the Mouse.
L. Owens, E. Buhr, D. C. Tu, T. L. Lamprecht, J. Lee, and R. N. Van Gelder (2012)
Invest. Ophthalmol. Vis. Sci. 53, 454-460
   Abstract »    Full Text »    PDF »
A Distinct Contribution of Short-Wavelength-Sensitive Cones to Light-Evoked Activity in the Mouse Pretectal Olivary Nucleus.
A. E. Allen, T. M. Brown, and R. J. Lucas (2011)
J. Neurosci. 31, 16833-16843
   Abstract »    Full Text »    PDF »
Melanopsin-Positive Intrinsically Photosensitive Retinal Ganglion Cells: From Form to Function.
T. M. Schmidt, M. T. H. Do, D. Dacey, R. Lucas, S. Hattar, and A. Matynia (2011)
J. Neurosci. 31, 16094-16101
   Abstract »    Full Text »    PDF »
Toward a Clinical Protocol for Assessing Rod, Cone, and Melanopsin Contributions to the Human Pupil Response.
J. C. Park, A. L. Moura, A. S. Raza, D. W. Rhee, R. H. Kardon, and D. C. Hood (2011)
Invest. Ophthalmol. Vis. Sci. 52, 6624-6635
   Abstract »    Full Text »    PDF »
A "Melanopic" Spectral Efficiency Function Predicts the Sensitivity of Melanopsin Photoreceptors to Polychromatic Lights.
J. a. Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas (2011)
J Biol Rhythms 26, 314-323
   Abstract »    PDF »
Early Onset and Differential Temporospatial Expression of Melanopsin Isoforms in the Developing Chicken Retina.
D. M. Verra, M. A. Contin, D. Hicks, and M. E. Guido (2011)
Invest. Ophthalmol. Vis. Sci. 52, 5111-5120
   Abstract »    Full Text »    PDF »
Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans.
K. E. West, M. R. Jablonski, B. Warfield, K. S. Cecil, M. James, M. A. Ayers, J. Maida, C. Bowen, D. H. Sliney, M. D. Rollag, et al. (2011)
J Appl Physiol 110, 619-626
   Abstract »    Full Text »    PDF »
Different Inner Retinal Pathways Mediate Rod-Cone Input in Irradiance Detection for the Pupillary Light Reflex and Regulation of Behavioral State in Mice.
S. Thompson, S. F. Stasheff, J. Hernandez, E. Nylen, J. S. East, R. H. Kardon, L. H. Pinto, R. F. Mullins, and E. M. Stone (2011)
Invest. Ophthalmol. Vis. Sci. 52, 618-623
   Abstract »    Full Text »    PDF »
Light Activation of the Phosphoinositide Cycle in Intrinsically Photosensitive Chicken Retinal Ganglion Cells.
M. A. Contin, D. M. Verra, G. Salvador, M. Ilincheta, N. M. Giusto, and M. E. Guido (2010)
Invest. Ophthalmol. Vis. Sci. 51, 5491-5498
   Abstract »    Full Text »    PDF »
Intrinsically Photosensitive Retinal Ganglion Cells.
M. T. H. Do and K.-W. Yau (2010)
Physiol Rev 90, 1547-1581
   Abstract »    Full Text »    PDF »
Contribution of human melanopsin retinal ganglion cells to steady-state pupil responses.
S.-i. Tsujimura, K. Ukai, D. Ohama, A. Nuruki, and K. Yunokuchi (2010)
Proc R Soc B 277, 2485-2492
   Abstract »    Full Text »    PDF »
Physiology of Circadian Entrainment.
D. A. Golombek and R. E. Rosenstein (2010)
Physiol Rev 90, 1063-1102
   Abstract »    Full Text »    PDF »
Spectral Responses of the Human Circadian System Depend on the Irradiance and Duration of Exposure to Light.
J. J. Gooley, S. M. W. Rajaratnam, G. C. Brainard, R. E. Kronauer, C. A. Czeisler, and S. W. Lockley (2010)
Science Translational Medicine 2, 31ra33
   Abstract »    Full Text »    PDF »
The evolution of irradiance detection: melanopsin and the non-visual opsins.
S. N. Peirson, S. Halford, and R. G. Foster (2009)
Phil Trans R Soc B 364, 2849-2865
   Abstract »    Full Text »    PDF »
Evolution of opsins and phototransduction.
Y. Shichida and T. Matsuyama (2009)
Phil Trans R Soc B 364, 2881-2895
   Abstract »    Full Text »    PDF »
Evolution and the origin of the visual retinoid cycle in vertebrates.
T. G. Kusakabe, N. Takimoto, M. Jin, and M. Tsuda (2009)
Phil Trans R Soc B 364, 2897-2910
   Abstract »    Full Text »    PDF »
Circadian Modulation of Melanopsin-Driven Light Response in Rat Ganglion-Cell Photoreceptors.
S. Weng, K. Y. Wong, and D. M. Berson (2009)
J Biol Rhythms 24, 391-402
   Abstract »    PDF »
Differential Expression of Two Distinct Functional Isoforms of Melanopsin (Opn4) in the Mammalian Retina.
S. S. Pires, S. Hughes, M. Turton, Z. Melyan, S. N. Peirson, L. Zheng, M. Kosmaoglou, J. Bellingham, M. E. Cheetham, R. J. Lucas, et al. (2009)
J. Neurosci. 29, 12332-12342
   Abstract »    Full Text »    PDF »
Age-Related Changes in Acute and Phase-Advancing Responses to Monochromatic Light.
T. L. Sletten, V. L. Revell, B. Middleton, K. A. Lederle, and D. J. Skene (2009)
J Biol Rhythms 24, 73-84
   Abstract »    PDF »
Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation.
C. M. Altimus, A. D. Guler, K. L. Villa, D. S. McNeill, T. A. LeGates, and S. Hattar (2008)
PNAS 105, 19998-20003
   Abstract »    Full Text »    PDF »
Sensitivity of the Human Circadian System to Short-Wavelength (420-nm) Light.
G. C. Brainard, D. Sliney, J. P. Hanifin, G. Glickman, B. Byrne, J. M. Greeson, S. Jasser, E. Gerner, and M. D. Rollag (2008)
J Biol Rhythms 23, 379-386
   Abstract »    PDF »
Intraretinal signaling by ganglion cell photoreceptors to dopaminergic amacrine neurons.
D.-Q. Zhang, K. Y. Wong, P. J. Sollars, D. M. Berson, G. E. Pickard, and D. G. McMahon (2008)
PNAS 105, 14181-14186
   Abstract »    Full Text »    PDF »
Intrinsic and Extrinsic Light Responses in Melanopsin-Expressing Ganglion Cells During Mouse Development.
T. M. Schmidt, K. Taniguchi, and P. Kofuji (2008)
J Neurophysiol 100, 371-384
   Abstract »    Full Text »    PDF »
Photochemistry of retinal chromophore in mouse melanopsin.
M. T. Walker, R. L. Brown, T. W. Cronin, and P. R. Robinson (2008)
PNAS 105, 8861-8865
   Abstract »    Full Text »    PDF »
Melanopsin Ganglion Cells Use a Membrane-Associated Rhabdomeric Phototransduction Cascade.
D. M. Graham, K. Y. Wong, P. Shapiro, C. Frederick, K. Pattabiraman, and D. M. Berson (2008)
J Neurophysiol 99, 2522-2532
   Abstract »    Full Text »    PDF »
Cholecystokinin-A receptors regulate photic input pathways to the circadian clock.
T. Shimazoe, M. Morita, S. Ogiwara, T. Kojiya, J. Goto, M. Kamakura, T. Moriya, K. Shinohara, S. Takiguchi, A. Kono, et al. (2008)
FASEB J 22, 1479-1490
   Abstract »    Full Text »    PDF »
Photic Sensitivity Ranges of Hamster Pupillary and Circadian Phase Responses Do Not Overlap.
R. A. Hut, M. Oklejewicz, C. Rieux, and H. M. Cooper (2008)
J Biol Rhythms 23, 37-48
   Abstract »    PDF »
Melanopsin-Dependent Nonvisual Responses: Evidence for Photopigment Bistability In Vivo.
L. S. Mure, C. Rieux, S. Hattar, and H. M. Cooper (2007)
J Biol Rhythms 22, 411-424
   Abstract »    PDF »
Synaptic Contact between Melanopsin-Containing Retinal Ganglion Cells and Rod Bipolar Cells.
J. Ostergaard, J. Hannibal, and J. Fahrenkrug (2007)
Invest. Ophthalmol. Vis. Sci. 48, 3812-3820
   Abstract »    Full Text »    PDF »
Synaptic influences on rat ganglion-cell photoreceptors.
K. Y. Wong, F. A. Dunn, D. M. Graham, and D. M. Berson (2007)
J. Physiol. 582, 279-296
   Abstract »    Full Text »    PDF »
2-Aminoethoxydiphenylborane Is an Acute Inhibitor of Directly Photosensitive Retinal Ganglion Cell Activity In Vitro and In Vivo.
S. Sekaran, G. S. Lall, K. L. Ralphs, A. J. Wolstenholme, R. J. Lucas, R. G. Foster, and M. W. Hankins (2007)
J. Neurosci. 27, 3981-3986
   Abstract »    Full Text »    PDF »
Melanopsin-Dependent Persistence and Photopotentiation of Murine Pupillary Light Responses.
Y. Zhu, D. C. Tu, D. Denner, T. Shane, C. M. Fitzgerald, and R. N. Van Gelder (2007)
Invest. Ophthalmol. Vis. Sci. 48, 1268-1275
   Abstract »    Full Text »    PDF »
Multiple Photoreceptors Contribute to Nonimage-forming Visual Functions Predominantly through Melanopsin-containing Retinal Ganglion Cells.
A.D. Guler, C.M. Altimus, J.L. Ecker, and S. Hattar (2007)
Cold Spring Harb Symp Quant Biol 72, 509-515
   Abstract »    PDF »
Pupillographic Measurements with Pattern Stimulation: The Pupil's Response in Normal Subjects and First Measurements in Glaucoma Patients.
B. Link, A. Junemann, R. Rix, O. Sembritzki, A. Brenning, M. Korth, and F. K. Horn (2006)
Invest. Ophthalmol. Vis. Sci. 47, 4947-4955
   Abstract »    Full Text »    PDF »
Dim Light Adaptation Attenuates Acute Melatonin Suppression in Humans.
S. A. Jasser, J. P. Hanifin, M. D. Rollag, and G. C. Brainard (2006)
J Biol Rhythms 21, 394-404
   Abstract »    PDF »
Chromophore regeneration: Melanopsin does its own thing.
R. J. Lucas (2006)
PNAS 103, 10153-10154
   Full Text »    PDF »
Immunohistochemical evidence of a melanopsin cone in human retina..
O. Dkhissi-Benyahya, C. Rieux, R. A. Hut, and H. M. Cooper (2006)
Invest. Ophthalmol. Vis. Sci. 47, 1636-1641
   Abstract »    Full Text »    PDF »
Photons, Clocks, and Consciousness.
G. C. Brainard and J. P. Hanifin (2005)
J Biol Rhythms 20, 314-325
   Abstract »    PDF »
Intrinsically photosensitive retinal ganglion cells detect light with a vitamin A-based photopigment, melanopsin.
Y. Fu, H. Zhong, M.-H. H. Wang, D.-G. Luo, H.-W. Liao, H. Maeda, S. Hattar, L. J. Frishman, and K.-W. Yau (2005)
PNAS 102, 10339-10344
   Abstract »    Full Text »    PDF »
Nasal versus Temporal Illumination of the Human Retina: Effects on Core Body Temperature, Melatonin, and Circadian Phase.
M. Ruger, M. C. M. Gordijn, D. G. M. Beersma, B. de Vries, and S. Daan (2005)
J Biol Rhythms 20, 60-70
   Abstract »    PDF »
Illumination of the Melanopsin Signaling Pathway.
S. Panda, S. K. Nayak, B. Campo, J. R. Walker, J. B. Hogenesch, and T. Jegla (2005)
Science 307, 600-604
   Abstract »    Full Text »    PDF »
Rhabdomeric phototransduction initiated by the vertebrate photopigment melanopsin.
M. C. Isoldi, M. D. Rollag, A. M. d. L. Castrucci, and I. Provencio (2005)
PNAS 102, 1217-1221
   Abstract »    Full Text »    PDF »
Effect of Vitamin A Depletion on Nonvisual Phototransduction Pathways in Cryptochromeless Mice.
C. L. Thompson, C. P. Selby, R. N. Van Gelder, W. S. Blaner, J. Lee, L. Quadro, K. Lai, M. E. Gottesman, and A. Sancar (2004)
J Biol Rhythms 19, 504-517
   Abstract »    PDF »
Melanopsin Is Expressed in PACAP-Containing Retinal Ganglion Cells of the Human Retinohypothalamic Tract.
J. Hannibal, P. Hindersson, J. Ostergaard, B. Georg, S. Heegaard, P. J. Larsen, and J. Fahrenkrug (2004)
Invest. Ophthalmol. Vis. Sci. 45, 4202-4209
   Abstract »    Full Text »    PDF »
Ciliary Photoreceptors with a Vertebrate-Type Opsin in an Invertebrate Brain.
D. Arendt, K. Tessmar-Raible, H. Snyman, A. W. Dorresteijn, and J. Wittbrodt (2004)
Science 306, 869-871
   Abstract »    Full Text »    PDF »
Classical Photoreceptors Regulate Melanopsin mRNA Levels in the Rat Retina.
K. Sakamoto, C. Liu, and G. Tosini (2004)
J. Neurosci. 24, 9693-9697
   Abstract »    Full Text »    PDF »
Efficacy of a single sequence of intermittent bright light pulses for delaying circadian phase in humans.
C. Gronfier, K. P. Wright Jr., R. E. Kronauer, M. E. Jewett, and C. A. Czeisler (2004)
Am J Physiol Endocrinol Metab 287, E174-E181
   Abstract »    Full Text »    PDF »
Impairment of the Transient Pupillary Light Reflex in Rpe65-/- Mice and Humans with Leber Congenital Amaurosis.
T. S. Aleman, S. G. Jacobson, J. D. Chico, M. L. Scott, A. Y. Cheung, E. A. M. Windsor, M. Furushima, T. M. Redmond, J. Bennett, K. Palczewski, et al. (2004)
Invest. Ophthalmol. Vis. Sci. 45, 1259-1271
   Abstract »    Full Text »    PDF »
Suprachiasmatic Nuclei Grafts Restore the Circadian Rhythm in the Paraventricular Nucleus of the Hypothalamus.
E. Tousson and H. Meissl (2004)
J. Neurosci. 24, 2983-2988
   Abstract »    Full Text »    PDF »
Quantification of Spatial Vision in the Royal College of Surgeons Rat.
T. J. McGill, R. M. Douglas, R. D. Lund, and G. T. Prusky (2004)
Invest. Ophthalmol. Vis. Sci. 45, 932-936
   Abstract »    Full Text »    PDF »
Clean Thoughts about Dirty Genes.
R. N. van Gelder and J. B. Hogenesch (2004)
J Biol Rhythms 19, 3-9
   Abstract »    PDF »
Seeing More Clearly: Recent Advances in Understanding Retinal Circuitry.
S. He, W. Dong, Q. Deng, S. Weng, and W. Sun (2003)
Science 302, 408-411
   Abstract »    Full Text »    PDF »
Expression of the Blue-Light Receptor Cryptochrome in the Human Retina.
C. L. Thompson, C. B. Rickman, S. J. Shaw, J. N. Ebright, U. Kelly, A. Sancar, and D. W. Rickman (2003)
Invest. Ophthalmol. Vis. Sci. 44, 4515-4521
   Abstract »    Full Text »    PDF »
A Broad Role for Melanopsin in Nonvisual Photoreception.
J. J. Gooley, J. Lu, D. Fischer, and C. B. Saper (2003)
J. Neurosci. 23, 7093-7106
   Abstract »    Full Text »    PDF »
Retinal transplantation: progress and problems in clinical application.
R. D. Lund, S. J. Ono, D. J. Keegan, and J. M. Lawrence (2003)
J. Leukoc. Biol. 74, 151-160
   Abstract »    Full Text »    PDF »
Melanopsin Is Required for Non-Image-Forming Photic Responses in Blind Mice.
S. Panda, I. Provencio, D. C. Tu, S. S. Pires, M. D. Rollag, A. M. Castrucci, M. T. Pletcher, T. K. Sato, T. Wiltshire, M. Andahazy, et al. (2003)
Science 301, 525-527
   Abstract »    Full Text »    PDF »
Melanopsin, Ganglion-Cell Photoreceptors, and Mammalian Photoentrainment.
M. D. Rollag, D. M. Berson, and I. Provencio (2003)
J Biol Rhythms 18, 227-234
   Abstract »    PDF »
CIRCADIAN RHYTHMS: Circadian Photoreception.
M. Menaker (2003)
Science 299, 213-214
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882