Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 299 (5604): 247-251

Copyright © 2003 by the American Association for the Advancement of Science

Regulation of Blood and Lymphatic Vascular Separation by Signaling Proteins SLP-76 and Syk

Farhad Abtahian,1* Anastasia Guerriero,1* Eric Sebzda,2 Min-Min Lu,2 Rong Zhou,3 Attila Mocsai,4 Erin E. Myers,1 Bin Huang,2 David G. Jackson,5 Victor A. Ferrari,2 Victor Tybulewicz,6 Clifford A. Lowell,4 John J. Lepore,2 Gary A. Koretzky,17dagger Mark L. Kahn2dagger

Lymphatic vessels develop from specialized endothelial cells in preexisting blood vessels, but the molecular signals that regulate this separation are unknown. Here we identify a failure to separate emerging lymphatic vessels from blood vessels in mice lacking the hematopoietic signaling protein SLP-76 or Syk. Blood-lymphatic connections lead to embryonic hemorrhage and arteriovenous shunting. Expression of slp-76 could not be detected in endothelial cells, and blood-filled lymphatics also arose in wild-type mice reconstituted with SLP-76-deficient bone marrow. These studies reveal a hematopoietic signaling pathway required for separation of the two major vascular networks in mammals.

1 Signal Transduction Program, Abramson Family Cancer Research Institute;
2 Division of Cardiology and Department of Medicine;
3 Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA.
4 Department of Laboratory Medicine, University of California, San Francisco, CA 94143-0134, USA.
5 MRC Human Immunology Unit, Institute of Molecular Medicine, John Radcliffe Hospital, Headington, Oxford OX3 9DS, UK.
6 Division of Immune Cell Biology, National Institute for Medical Research, Mill Hill, London NW7 1AA, UK.
7 Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
*   These authors contributed equally to this work.

dagger    To whom correspondence should be addressed. E-mail: koretzky{at} or markkahn{at}

Platelet Immunoreceptor Tyrosine-Based Activation Motif (ITAM) Signaling and Vascular Integrity.
Y. Boulaftali, P. R. Hess, M. L. Kahn, and W. Bergmeier (2014)
Circ. Res. 114, 1174-1184
   Abstract »    Full Text »    PDF »
Growth Factor Receptor-Bound Protein 2 Contributes to (Hem)Immunoreceptor Tyrosine-Based Activation Motif-Mediated Signaling in Platelets.
S. Dutting, T. Vogtle, M. Morowski, S. Schiessl, C. M. Schafer, S. K. Watson, C. E. Hughes, J. A. Ackermann, D. Radtke, H. M. Hermanns, et al. (2014)
Circ. Res. 114, 444-453
   Abstract »    Full Text »    PDF »
Novel small molecule therapeutics in rheumatoid arthritis.
V. Kelly and M. Genovese (2013)
Rheumatology 52, 1155-1162
   Abstract »    Full Text »    PDF »
Spleen Tyrosine Kinase (Syk)-dependent Calcium Signals Mediate Efficient CpG-induced Exocytosis of Tumor Necrosis Factor {alpha} (TNF{alpha}) in Innate Immune Cells.
S. Rao, X. Liu, B. D. Freedman, and E. M. Behrens (2013)
J. Biol. Chem. 288, 12448-12458
   Abstract »    Full Text »    PDF »
Getting out and about: the emergence and morphogenesis of the vertebrate lymphatic vasculature.
K. Koltowska, K. L. Betterman, N. L. Harvey, and B. M. Hogan (2013)
Development 140, 1857-1870
   Abstract »    Full Text »    PDF »
A novel multistep mechanism for initial lymphangiogenesis in mouse embryos based on ultramicroscopy.
R. Hagerling, C. Pollmann, M. Andreas, C. Schmidt, H. Nurmi, R. H. Adams, K. Alitalo, V. Andresen, S. Schulte-Merker, and F. Kiefer (2013)
EMBO J. 32, 629-644
   Abstract »    Full Text »    PDF »
Critical Role for an Acidic Amino Acid Region in Platelet Signaling by the HemITAM (Hemi-immunoreceptor Tyrosine-based Activation Motif) Containing Receptor CLEC-2 (C-type Lectin Receptor-2).
C. E. Hughes, U. Sinha, A. Pandey, J. A. Eble, C. A. O'Callaghan, and S. P. Watson (2013)
J. Biol. Chem. 288, 5127-5135
   Abstract »    Full Text »    PDF »
Platelet Activation Receptor CLEC-2 Regulates Blood/Lymphatic Vessel Separation by Inhibiting Proliferation, Migration, and Tube Formation of Lymphatic Endothelial Cells.
M. Osada, O. Inoue, G. Ding, T. Shirai, H. Ichise, K. Hirayama, K. Takano, Y. Yatomi, M. Hirashima, H. Fujii, et al. (2012)
J. Biol. Chem. 287, 22241-22252
   Abstract »    Full Text »    PDF »
Myeloid Cells and Lymphangiogenesis.
A. Zumsteg and G. Christofori (2012)
Cold Spring Harb Perspect Med 2, a006494
   Abstract »    Full Text »    PDF »
The New Era of the Lymphatic System: No Longer Secondary to the Blood Vascular System.
I. Choi, S. Lee, and Y.-K. Hong (2012)
Cold Spring Harb Perspect Med 2, a006445
   Abstract »    Full Text »    PDF »
CLEC-2 and Syk in the megakaryocytic/platelet lineage are essential for development.
B. A. Finney, E. Schweighoffer, L. Navarro-Nunez, C. Benezech, F. Barone, C. E. Hughes, S. A. Langan, K. L. Lowe, A. Y. Pollitt, D. Mourao-Sa, et al. (2012)
Blood 119, 1747-1756
   Abstract »    Full Text »    PDF »
Crucial role of SLP-76 and ADAP for neutrophil recruitment in mouse kidney ischemia-reperfusion injury.
H. Block, J. M. Herter, J. Rossaint, A. Stadtmann, S. Kliche, C. A. Lowell, and A. Zarbock (2012)
J. Exp. Med. 209, 407-421
   Abstract »    Full Text »    PDF »
Spleen Tyrosine Kinase Mediates BEAS-2B Cell Migration and Proliferation and Human Rhinovirus-Induced Expression of Vascular Endothelial Growth Factor and Interleukin-8.
X. Wang, M. Mychajlowycz, C. Lau, C. Gutierrez, J. A. Scott, and C.-W. Chow (2012)
J. Pharmacol. Exp. Ther. 340, 277-285
   Abstract »    Full Text »    PDF »
Prox1 dosage controls the number of lymphatic endothelial cell progenitors and the formation of the lymphovenous valves.
R. S. Srinivasan and G. Oliver (2011)
Genes & Dev. 25, 2187-2197
   Abstract »    Full Text »    PDF »
Deletion of Syk in Neutrophils Prevents Immune Complex Arthritis.
E. R. Elliott, J. A. Van Ziffle, P. Scapini, B. M. Sullivan, R. M. Locksley, and C. A. Lowell (2011)
J. Immunol. 187, 4319-4330
   Abstract »    Full Text »    PDF »
Essential in vivo roles of the platelet activation receptor CLEC-2 in tumour metastasis, lymphangiogenesis and thrombus formation.
K. Suzuki-Inoue (2011)
J. Biochem. 150, 127-132
   Abstract »    Full Text »    PDF »
Lymphatic vascular morphogenesis in development, physiology, and disease.
S. Schulte-Merker, A. Sabine, and T. V. Petrova (2011)
J. Cell Biol. 193, 607-618
   Abstract »    Full Text »    PDF »
Biological Basis of Therapeutic Lymphangiogenesis.
C. Norrmen, T. Tammela, T. V. Petrova, and K. Alitalo (2011)
Circulation 123, 1335-1351
   Full Text »    PDF »
Platelets: Covert Regulators of Lymphatic Development.
C. C. Bertozzi, P. R. Hess, and M. L. Kahn (2010)
Arterioscler Thromb Vasc Biol 30, 2368-2371
   Abstract »    Full Text »    PDF »
Podoplanin-Fc reduces lymphatic vessel formation in vitro and in vivo and causes disseminated intravascular coagulation when transgenically expressed in the skin.
L. N. Cueni, L. Chen, H. Zhang, D. Marino, R. Huggenberger, A. Alitalo, R. Bianchi, and M. Detmar (2010)
Blood 116, 4376-4384
   Abstract »    Full Text »    PDF »
Lymphatic capillary hypoplasia in the skin of fetuses with increased nuchal translucency and Turner's syndrome: comparison with trisomies and controls.
C. S. von Kaisenberg, J. Wilting, T. Dork, K. H. Nicolaides, I. Meinhold-Heerlein, P. Hillemanns, and B. Brand-Saberi (2010)
Mol. Hum. Reprod. 16, 778-789
   Abstract »    Full Text »    PDF »
Lymphotoxin-alpha contributes to lymphangiogenesis.
R. H. Mounzer, O. S. Svendsen, P. Baluk, C. M. Bergman, T. P. Padera, H. Wiig, R. K. Jain, D. M. McDonald, and N. H. Ruddle (2010)
Blood 116, 2173-2182
   Abstract »    Full Text »    PDF »
Radiation therapy causes loss of dermal lymphatic vessels and interferes with lymphatic function by TGF-{beta}1-mediated tissue fibrosis.
T. Avraham, A. Yan, J. C. Zampell, S. V. Daluvoy, A. Haimovitz-Friedman, A. P. Cordeiro, and B. J. Mehrara (2010)
Am J Physiol Cell Physiol 299, C589-C605
   Abstract »    Full Text »    PDF »
K. Suzuki-Inoue, O. Inoue, G. Ding, S. Nishimura, K. Hokamura, K. Eto, H. Kashiwagi, Y. Tomiyama, Y. Yatomi, K. Umemura, et al. (2010)
J. Biol. Chem. 285, 24494-24507
   Abstract »    Full Text »    PDF »
Inside bloody lymphatics.
G. D'Amico and K. Alitalo (2010)
Blood 116, 512-513
   Full Text »    PDF »
Platelets regulate lymphatic vascular development through CLEC-2-SLP-76 signaling.
C. C. Bertozzi, A. A. Schmaier, P. Mericko, P. R. Hess, Z. Zou, M. Chen, C.-Y. Chen, B. Xu, M.-m. Lu, D. Zhou, et al. (2010)
Blood 116, 661-670
   Abstract »    Full Text »    PDF »
LEC fate regulators: the 3 musketeers.
H. Kim and G. Y. Koh (2010)
Blood 116, 4-5
   Full Text »    PDF »
Novel function for blood platelets and podoplanin in developmental separation of blood and lymphatic circulation.
P. Uhrin, J. Zaujec, J. M. Breuss, D. Olcaydu, P. Chrenek, H. Stockinger, E. Fuertbauer, M. Moser, P. Haiko, R. Fassler, et al. (2010)
Blood 115, 3997-4005
   Abstract »    Full Text »    PDF »
Platelets Take the Lead in Lymphatic Separation.
H. Kim and G. Y. Koh (2010)
Circ. Res. 106, 1184-1186
   Full Text »    PDF »
Platelets Play an Essential Role in Separating the Blood and Lymphatic Vasculatures During Embryonic Angiogenesis.
L. Carramolino, J. Fuentes, C. Garcia-Andres, V. Azcoitia, D. Riethmacher, and M. Torres (2010)
Circ. Res. 106, 1197-1201
   Abstract »    Full Text »    PDF »
Endothelial cell plasticity: how to become and remain a lymphatic endothelial cell.
G. Oliver and R. S. Srinivasan (2010)
Development 137, 363-372
   Abstract »    Full Text »    PDF »
Regulation of lymphatic-blood vessel separation by endothelial Rac1.
G. D'Amico, D. T. Jones, E. Nye, K. Sapienza, A. R. Ramjuan, L. E. Reynolds, S. D. Robinson, V. Kostourou, D. Martinez, D. Aubyn, et al. (2009)
Development 136, 4043-4053
   Abstract »    Full Text »    PDF »
Nitric oxide permits hypoxia-induced lymphatic perfusion by controlling arterial-lymphatic conduits in zebrafish and glass catfish.
L. Dahl Ejby Jensen, R. Cao, E.-M. Hedlund, I. Soll, J. O. Lundberg, G. Hauptmann, J. F. Steffensen, and Y. Cao (2009)
PNAS 106, 18408-18413
   Abstract »    Full Text »    PDF »
G Protein-Coupled Receptors as Potential Drug Targets for Lymphangiogenesis and Lymphatic Vascular Diseases.
W. P. Dunworth and K. M. Caron (2009)
Arterioscler Thromb Vasc Biol 29, 650-656
   Abstract »    Full Text »    PDF »
Critical role of phospholipase C{gamma}2 in integrin and Fc receptor-mediated neutrophil functions and the effector phase of autoimmune arthritis.
Z. Jakus, E. Simon, D. Frommhold, M. Sperandio, and A. Mocsai (2009)
J. Exp. Med. 206, 577-593
   Abstract »    Full Text »    PDF »
Phospholipase C{gamma}2 is necessary for separation of blood and lymphatic vasculature in mice.
H. Ichise, T. Ichise, O. Ohtani, and N. Yoshida (2009)
Development 136, 191-195
   Abstract »    Full Text »    PDF »
Master and commander: continued expression of Prox1 prevents the dedifferentiation of lymphatic endothelial cells.
M. G. Bixel and R. H. Adams (2008)
Genes & Dev. 22, 3232-3235
   Abstract »    Full Text »    PDF »
Lymphatic endothelial cell identity is reversible and its maintenance requires Prox1 activity.
N. C. Johnson, M. E. Dillard, P. Baluk, D. M. McDonald, N. L. Harvey, S. L. Frase, and G. Oliver (2008)
Genes & Dev. 22, 3282-3291
   Abstract »    Full Text »    PDF »
A Novel Gene Expression Profile in Lymphatics Associated with Tumor Growth and Nodal Metastasis.
S. Clasper, D. Royston, D. Baban, Y. Cao, S. Ewers, S. Butz, D. Vestweber, and D. G. Jackson (2008)
Cancer Res. 68, 7293-7303
   Abstract »    Full Text »    PDF »
Role of VEGF-D and VEGFR-3 in developmental lymphangiogenesis, a chemicogenetic study in Xenopus tadpoles.
A. Ny, M. Koch, W. Vandevelde, M. Schneider, C. Fischer, A. Diez-Juan, E. Neven, I. Geudens, S. Maity, L. Moons, et al. (2008)
Blood 112, 1740-1749
   Abstract »    Full Text »    PDF »
Requirements of SLP76 tyrosines in ITAM and integrin receptor signaling and in platelet function in vivo.
N. A. Bezman, L. Lian, C. S. Abrams, L. F. Brass, M. L. Kahn, M. S. Jordan, and G. A. Koretzky (2008)
J. Exp. Med. 205, 1775-1788
   Abstract »    Full Text »    PDF »
Lineage tracing demonstrates the venous origin of the mammalian lymphatic vasculature.
R. S. Srinivasan, M. E. Dillard, O. V. Lagutin, F.-J. Lin, S. Tsai, M.-J. Tsai, I. M. Samokhvalov, and G. Oliver (2007)
Genes & Dev. 21, 2422-2432
   Abstract »    Full Text »    PDF »
Role of Lymphangiogenesis in Cancer.
S. S. Sundar and T. S. Ganesan (2007)
J. Clin. Oncol. 25, 4298-4307
   Abstract »    Full Text »    PDF »
Involvement of the Snake Toxin Receptor CLEC-2, in Podoplanin-mediated Platelet Activation, by Cancer Cells.
K. Suzuki-Inoue, Y. Kato, O. Inoue, M. K. Kaneko, K. Mishima, Y. Yatomi, Y. Yamazaki, H. Narimatsu, and Y. Ozaki (2007)
J. Biol. Chem. 282, 25993-26001
   Abstract »    Full Text »    PDF »
Essential role for TAX1BP1 in the termination of TNF-{alpha}-, IL-1- and LPS-mediated NF-{kappa}B and JNK signaling.
N. Shembade, N. S. Harhaj, D. J. Liebl, and E. W. Harhaj (2007)
EMBO J. 26, 3910-3922
   Abstract »    Full Text »    PDF »
Distinct roles for Syk and ZAP-70 during early thymocyte development.
E. H. Palacios and A. Weiss (2007)
J. Exp. Med. 204, 1703-1715
   Abstract »    Full Text »    PDF »
Spreds Are Essential for Embryonic Lymphangiogenesis by Regulating Vascular Endothelial Growth Factor Receptor 3 Signaling.
K. Taniguchi, R.-i. Kohno, T. Ayada, R. Kato, K. Ichiyama, T. Morisada, Y. Oike, Y. Yonemitsu, Y. Maehara, and A. Yoshimura (2007)
Mol. Cell. Biol. 27, 4541-4550
   Abstract »    Full Text »    PDF »
Loss of SLP-76 Expression within Myeloid Cells Confers Resistance to Neutrophil-Mediated Tissue Damage while Maintaining Effective Bacterial Killing.
R. A. Clemens, L. E. Lenox, T. Kambayashi, N. Bezman, J. S. Maltzman, K. E. Nichols, and G. A. Koretzky (2007)
J. Immunol. 178, 4606-4614
   Abstract »    Full Text »    PDF »
GPVI Potentiation of Platelet Activation by Thrombin and Adhesion Molecules Independent of Src Kinases and Syk.
S. C. Hughan, C. E. Hughes, O. J.T. McCarty, E. Schweighoffer, I. Soultanova, J. Ware, V. L.J. Tybulewicz, and S. P. Watson (2007)
Arterioscler Thromb Vasc Biol 27, 422-429
   Abstract »    Full Text »    PDF »
Postnatal lymphatic partitioning from the blood vasculature in the small intestine requires fasting-induced adipose factor.
F. Backhed, P. A. Crawford, D. O'Donnell, and J. I. Gordon (2007)
PNAS 104, 606-611
   Abstract »    Full Text »    PDF »
Novel Platelet and Vascular Roles for Immunoreceptor Signaling.
F. F. Samaha and M. L. Kahn (2006)
Arterioscler Thromb Vasc Biol 26, 2588-2593
   Abstract »    Full Text »    PDF »
Evidence for the Requirement of ITAM Domains but Not SLP-76/Gads Interaction for Integrin Signaling in Hematopoietic Cells.
F. Abtahian, N. Bezman, R. Clemens, E. Sebzda, L. Cheng, S. J. Shattil, M. L. Kahn, and G. A. Koretzky (2006)
Mol. Cell. Biol. 26, 6936-6949
   Abstract »    Full Text »    PDF »
A Novel Spleen Tyrosine Kinase Inhibitor Blocks c-Jun N-Terminal Kinase-Mediated Gene Expression in Synoviocytes.
H.-S. Cha, D. L. Boyle, T. Inoue, R. Schoot, P. P. Tak, P. Pine, and G. S. Firestein (2006)
J. Pharmacol. Exp. Ther. 317, 571-578
   Abstract »    Full Text »    PDF »
Botrocetin/VWF-induced signaling through GPIb-IX-V produces TxA2 in an {alpha}IIb{beta}3- and aggregation-independent manner.
J. Liu, T. I. Pestina, M. C. Berndt, C. W. Jackson, and T. K. Gartner (2005)
Blood 106, 2750-2756
   Abstract »    Full Text »    PDF »
Vav1 and Vav3 Have Critical but Redundant Roles in Mediating Platelet Activation by Collagen.
A. C. Pearce, Y. A. Senis, D. D. Billadeau, M. Turner, S. P. Watson, and E. Vigorito (2004)
J. Biol. Chem. 279, 53955-53962
   Abstract »    Full Text »    PDF »
Inactivation of c-Cbl Reverses Neonatal Lethality and T Cell Developmental Arrest of SLP-76-deficient Mice.
Y. J. Chiang, C. L. Sommers, M. S. Jordan, H. Gu, L. E. Samelson, G. A. Koretzky, and R. J. Hodes (2004)
J. Exp. Med. 200, 25-34
   Abstract »    Full Text »    PDF »
Immune Functions in Mice Lacking Clnk, an SLP-76-Related Adaptor Expressed in a Subset of Immune Cells.
O. Utting, B. J. Sedgmen, T. H. Watts, X. Shi, R. Rottapel, A. Iulianella, D. Lohnes, and A. Veillette (2004)
Mol. Cell. Biol. 24, 6067-6075
   Abstract »    Full Text »    PDF »
Roles of the Proline-rich Domain in SLP-76 Subcellular Localization and T Cell Function.
A. L. Singer, S. C. Bunnell, A. E. Obstfeld, M. S. Jordan, J. N. Wu, P. S. Myung, L. E. Samelson, and G. A. Koretzky (2004)
J. Biol. Chem. 279, 15481-15490
   Abstract »    Full Text »    PDF »
Transcriptional Regulation of Src Homology 2 Domain-Containing Leukocyte Phosphoprotein of 76 kDa: Dissection of Key Promoter Elements.
X.-P. Zhong, J. S. Maltzman, E. A. Hainey, and G. A. Koretzky (2003)
J. Immunol. 171, 6621-6629
   Abstract »    Full Text »    PDF »
Lymphatic endothelium: morphological, molecular and functional properties.
M. S. Pepper and M. Skobe (2003)
J. Cell Biol. 163, 209-213
   Abstract »    Full Text »    PDF »
Alternative Splicing Disrupts a Nuclear Localization Signal in Spleen Tyrosine Kinase That Is Required for Invasion Suppression in Breast Cancer.
L. Wang, L. Duke, P. S. Zhang, R. B. Arlinghaus, W. F. Symmans, A. Sahin, R. Mendez, and J. L. Dai (2003)
Cancer Res. 63, 4724-4730
   Abstract »    Full Text »    PDF »
DEVELOPMENT: Lymphatics Make the Break.
R. K. Jain and T. P. Padera (2003)
Science 299, 209-210
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882