Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 299 (5610): 1228-1231

Copyright © 2003 by the American Association for the Advancement of Science

Proteomic Screen Finds pSer/pThr-Binding Domain Localizing Plk1 to Mitotic Substrates

Andrew E. H. Elia,12 Lewis C. Cantley,2 Michael B. Yaffe1*

We have developed a proteomic approach for identifying phosphopeptide binding domains that modulate kinase-dependent signaling pathways. An immobilized library of partially degenerate phosphopeptides biased toward a particular protein kinase phosphorylation motif is used to isolate phospho-binding domains that bind to proteins phosphorylated by that kinase. Applying this approach to cyclin-dependent kinases (Cdks), we identified the polo-box domain (PBD) of the mitotic kinase polo-like kinase 1 (Plk1) as a specific phosphoserine (pSer) or phosphothreonine (pThr) binding domain and determined its optimal binding motif. This motif is present in known Plk1 substrates such as Cdc25, and an optimal phosphopeptide containing the motif disrupted PBD-substrate binding and localization of the PBD to centrosomes. This finding reveals how Plk1 can localize to specific sites within cells in response to Cdk phosphorylation at those sites and provides a structural mechanism for targeting the Plk1 kinase domain to its substrates.

1 Center for Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
2 Division of Signal Transduction, Beth Israel Deaconess Hospital, and Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA.
*   To whom correspondence should be addressed. E-mail: myaffe{at}mit.edu



THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Phosphorylation of Myosin II-interacting Guanine Nucleotide Exchange Factor (MyoGEF) at Threonine 544 by Aurora B Kinase Promotes the Binding of Polo-like Kinase 1 to MyoGEF.
D. Wu, M. Asiedu, F. Matsumura, and Q. Wei (2014)
J. Biol. Chem. 289, 7142-7150
   Abstract »    Full Text »    PDF »
Polo-like kinase-1 triggers histone phosphorylation by Haspin in mitosis.
L. Zhou, X. Tian, C. Zhu, F. Wang, and J. M. Higgins (2014)
EMBO Rep. 15, 273-281
   Abstract »    Full Text »    PDF »
BRCA2 Phosphorylated by PLK1 Moves to the Midbody to Regulate Cytokinesis Mediated by Nonmuscle Myosin IIC.
M. Takaoka, H. Saito, K. Takenaka, Y. Miki, and A. Nakanishi (2014)
Cancer Res. 74, 1518-1528
   Abstract »    Full Text »    PDF »
Bora and Aurora-A continue to activate Plk1 in mitosis.
W. Bruinsma, L. Macurek, R. Freire, A. Lindqvist, and R. H. Medema (2014)
J. Cell Sci. 127, 801-811
   Abstract »    Full Text »    PDF »
Polo-like Kinase 2, a Novel ADAM17 Signaling Component, Regulates Tumor Necrosis Factor {alpha} Ectodomain Shedding.
J. Schwarz, S. Schmidt, O. Will, T. Koudelka, K. Kohler, M. Boss, B. Rabe, A. Tholey, J. Scheller, D. Schmidt-Arras, et al. (2014)
J. Biol. Chem. 289, 3080-3093
   Abstract »    Full Text »    PDF »
Mitotic Regulation of SEPT9 Protein by Cyclin-dependent Kinase 1 (Cdk1) and Pin1 Protein Is Important for the Completion of Cytokinesis.
M. P. Estey, C. Di Ciano-Oliveira, C. D. Froese, K. Y. Y. Fung, J. D. Steels, D. W. Litchfield, and W. S. Trimble (2013)
J. Biol. Chem. 288, 30075-30086
   Abstract »    Full Text »    PDF »
RNF4 and PLK1 are required for replication fork collapse in ATR-deficient cells.
R. L. Ragland, S. Patel, R. S. Rivard, K. Smith, A. A. Peters, A.-K. Bielinsky, and E. J. Brown (2013)
Genes & Dev. 27, 2259-2273
   Abstract »    Full Text »    PDF »
Polo kinase Cdc5 is a central regulator of meiosis I.
M. A. Attner, M. P. Miller, L.-s. Ee, S. K. Elkin, and A. Amon (2013)
PNAS 110, 14278-14283
   Abstract »    Full Text »    PDF »
The role of PLK1-phosphorylated SVIL in myosin II activation and cytokinetic furrowing.
H. Hasegawa, T. Hyodo, E. Asano, S. Ito, M. Maeda, H. Kuribayashi, A. Natsume, T. Wakabayashi, M. Hamaguchi, and T. Senga (2013)
J. Cell Sci. 126, 3627-3637
   Abstract »    Full Text »    PDF »
Polo-like kinase phosphorylation of bilobe-resident TbCentrin2 facilitates flagellar inheritance in Trypanosoma brucei.
C. L. de Graffenried, D. Anrather, F. Von Raussendorf, and G. Warren (2013)
Mol. Biol. Cell 24, 1947-1963
   Abstract »    Full Text »    PDF »
Activation of the Yeast Hippo Pathway by Phosphorylation-Dependent Assembly of Signaling Complexes.
J. M. Rock, D. Lim, L. Stach, R. W. Ogrodowicz, J. M. Keck, M. H. Jones, C. C. L. Wong, J. R. Yates III, M. Winey, S. J. Smerdon, et al. (2013)
Science 340, 871-875
   Abstract »    Full Text »    PDF »
Systematic analysis of the Plk-mediated phosphoregulation in eukaryotes.
Z. Liu, J. Ren, J. Cao, J. He, X. Yao, C. Jin, and Y. Xue (2013)
Brief Bioinform 14, 344-360
   Abstract »    Full Text »    PDF »
Premature Cdk1/Cdc5/Mus81 pathway activation induces aberrant replication and deleterious crossover.
B. Szakal and D. Branzei (2013)
EMBO J. 32, 1155-1167
   Abstract »    Full Text »    PDF »
Dynactin helps target Polo-like kinase 1 to kinetochores via its left-handed beta-helical p27 subunit.
T.-Y. Yeh, A. K. Kowalska, B. R. Scipioni, F. K. Y. Cheong, M. Zheng, U. Derewenda, Z. S. Derewenda, and T. A. Schroer (2013)
EMBO J. 32, 1023-1035
   Abstract »    Full Text »    PDF »
Binding of Drosophila Polo kinase to its regulator Matrimony is noncanonical and involves two separate functional domains.
A. M. Bonner, S. E. Hughes, J. A. Chisholm, S. K. Smith, B. D. Slaughter, J. R. Unruh, K. A. Collins, J. M. Friederichs, L. Florens, S. K. Swanson, et al. (2013)
PNAS 110, E1222-E1231
   Abstract »    Full Text »    PDF »
MISP is a novel Plk1 substrate required for proper spindle orientation and mitotic progression.
M. Zhu, F. Settele, S. Kotak, L. Sanchez-Pulido, L. Ehret, C. P. Ponting, P. Gonczy, and I. Hoffmann (2013)
J. Cell Biol. 200, 773-787
   Abstract »    Full Text »    PDF »
PCM1 recruits Plk1 to the pericentriolar matrix to promote primary cilia disassembly before mitotic entry.
G. Wang, Q. Chen, X. Zhang, B. Zhang, X. Zhuo, J. Liu, Q. Jiang, and C. Zhang (2013)
J. Cell Sci. 126, 1355-1365
   Abstract »    Full Text »    PDF »
Skp1-Cul1-F-box Ubiquitin Ligase (SCF{beta}TrCP)-mediated Destruction of the Ubiquitin-specific Protease USP37 during G2-phase Promotes Mitotic Entry.
A. C. Burrows, J. Prokop, and M. K. Summers (2012)
J. Biol. Chem. 287, 39021-39029
   Abstract »    Full Text »    PDF »
AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis.
K. Hopker, H. Hagmann, S. Khurshid, S. Chen, P. Hasskamp, T. Seeger-Nukpezah, K. Schilberg, L. Heukamp, T. Lamkemeyer, M. L. Sos, et al. (2012)
EMBO J. 31, 3961-3975
   Abstract »    Full Text »    PDF »
Cdk1 and Plk1 mediate a CLASP2 phospho-switch that stabilizes kinetochore-microtubule attachments.
A. R. R. Maia, Z. Garcia, L. Kabeche, M. Barisic, S. Maffini, S. Macedo-Ribeiro, I. M. Cheeseman, D. A. Compton, I. Kaverina, and H. Maiato (2012)
J. Cell Biol. 199, 285-301
   Abstract »    Full Text »    PDF »
Cell cycle-dependent regulation of the nuclease activity of Mus81-Eme1/Mms4.
M. Gallo-Fernandez, I. Saugar, M. A. Ortiz-Bazan, M. V. Vazquez, and J. A. Tercero (2012)
Nucleic Acids Res. 40, 8325-8335
   Abstract »    Full Text »    PDF »
Polo-like kinase-1 regulates kinetochore-microtubule dynamics and spindle checkpoint silencing.
D. Liu, O. Davydenko, and M. A. Lampson (2012)
J. Cell Biol. 198, 491-499
   Abstract »    Full Text »    PDF »
Targeting Subcellular Localization through the Polo-Box Domain: Non-ATP Competitive Inhibitors Recapitulate a PLK1 Phenotype.
C. McInnes, K. Estes, M. Baxter, Z. Yang, D. B. Farag, P. Johnston, J. S. Lazo, J. Wang, and M. D. Wyatt (2012)
Mol. Cancer Ther. 11, 1683-1692
   Abstract »    Full Text »    PDF »
Polo-like kinase is necessary for flagellum inheritance in Trypanosoma brucei.
K. N. Ikeda and C. L. de Graffenried (2012)
J. Cell Sci. 125, 3173-3184
   Abstract »    Full Text »    PDF »
Threonine-4 of mammalian RNA polymerase II CTD is targeted by Polo-like kinase 3 and required for transcriptional elongation.
C. Hintermair, M. Heidemann, F. Koch, N. Descostes, M. Gut, I. Gut, R. Fenouil, P. Ferrier, A. Flatley, E. Kremmer, et al. (2012)
EMBO J. 31, 2784-2797
   Abstract »    Full Text »    PDF »
Plo1 phosphorylates Dam1 to promote chromosome bi-orientation in fission yeast.
G. J. Buttrick, T. C. Lancaster, J. C. Meadows, and J. B. A. Millar (2012)
J. Cell Sci. 125, 1645-1651
   Abstract »    Full Text »    PDF »
Combination of Chemical Genetics and Phosphoproteomics for Kinase Signaling Analysis Enables Confident Identification of Cellular Downstream Targets.
F. S. Oppermann, K. Grundner-Culemann, C. Kumar, O. J. Gruss, P. V. Jallepalli, and H. Daub (2012)
Mol. Cell. Proteomics 11, O111.012351
   Abstract »    Full Text »    PDF »
Structure-function relationship of the Polo-like kinase in Trypanosoma brucei.
Z. Yu, Y. Liu, and Z. Li (2012)
J. Cell Sci. 125, 1519-1530
   Abstract »    Full Text »    PDF »
The Renaissance or the cuckoo clock.
J. Pines and I. Hagan (2011)
Phil Trans R Soc B 366, 3625-3634
   Abstract »    Full Text »    PDF »
Interaction of Sororin Protein with Polo-like Kinase 1 Mediates Resolution of Chromosomal Arm Cohesion.
N. Zhang, A. K. Panigrahi, Q. Mao, and D. Pati (2011)
J. Biol. Chem. 286, 41826-41837
   Abstract »    Full Text »    PDF »
Cooperative Phosphorylation of FADD by Aur-A and Plk1 in Response to Taxol Triggers Both Apoptotic and Necrotic Cell Death.
M.-S. Jang, S.-J. Lee, N. S. Kang, and E. Kim (2011)
Cancer Res. 71, 7207-7215
   Abstract »    Full Text »    PDF »
Aurora promotes cell division during recovery from TOR-mediated cell cycle arrest by driving spindle pole body recruitment of Polo.
L. Halova and J. Petersen (2011)
J. Cell Sci. 124, 3441-3449
   Abstract »    Full Text »    PDF »
Polo-like Kinase 1 Inhibitors and Their Potential Role in Anticancer Therapy, with a Focus on NSCLC.
R. H. Medema, C.-C. Lin, and J. C.-H. Yang (2011)
Clin. Cancer Res. 17, 6459-6466
   Abstract »    Full Text »    PDF »
Nek9 is a Plk1-activated kinase that controls early centrosome separation through Nek6/7 and Eg5.
M. T. Bertran, S. Sdelci, L. Regue, J. Avruch, C. Caelles, and J. Roig (2011)
EMBO J. 30, 2634-2647
   Abstract »    Full Text »    PDF »
Spatial Exclusivity Combined with Positive and Negative Selection of Phosphorylation Motifs Is the Basis for Context-Dependent Mitotic Signaling.
J. Alexander, D. Lim, B. A. Joughin, B. Hegemann, J. R. A. Hutchins, T. Ehrenberger, F. Ivins, F. Sessa, O. Hudecz, E. A. Nigg, et al. (2011)
Science Signaling 4, ra42
   Abstract »    Full Text »    PDF »
Mammalian Polo-like Kinase 1-dependent Regulation of the PBIP1-CENP-Q Complex at Kinetochores.
Y. H. Kang, C. H. Park, T.-S. Kim, N.-K. Soung, J. K. Bang, B. Y. Kim, J.-E. Park, and K. S. Lee (2011)
J. Biol. Chem. 286, 19744-19757
   Abstract »    Full Text »    PDF »
Polo-like kinases and DNA damage checkpoint: beyond the traditional mitotic functions.
E. M. Bahassi (2011)
Experimental Biology and Medicine 236, 648-657
   Abstract »    Full Text »    PDF »
The Plk1-dependent Phosphoproteome of the Early Mitotic Spindle.
A. Santamaria, B. Wang, S. Elowe, R. Malik, F. Zhang, M. Bauer, A. Schmidt, H. H. W. Sillje, R. Korner, and E. A. Nigg (2011)
Mol. Cell. Proteomics 10, M110.004457
   Abstract »    Full Text »    PDF »
Dbf4 Regulates the Cdc5 Polo-like Kinase through a Distinct Non-canonical Binding Interaction.
Y.-C. Chen and M. Weinreich (2010)
J. Biol. Chem. 285, 41244-41254
   Abstract »    Full Text »    PDF »
Mitotic Inhibition of GRASP65 Organelle Tethering Involves Polo-like Kinase 1 (PLK1) Phosphorylation Proximate to an Internal PDZ Ligand.
D. Sengupta and A. D. Linstedt (2010)
J. Biol. Chem. 285, 39994-40003
   Abstract »    Full Text »    PDF »
The RSC chromatin-remodeling complex influences mitotic exit and adaptation to the spindle assembly checkpoint by controlling the Cdc14 phosphatase.
V. Rossio, E. Galati, M. Ferrari, A. Pellicioli, T. Sutani, K. Shirahige, G. Lucchini, and S. Piatti (2010)
J. Cell Biol. 191, 981-997
   Abstract »    Full Text »    PDF »
Plk1 negatively regulates Cep55 recruitment to the midbody to ensure orderly abscission.
R. N. Bastos and F. A. Barr (2010)
J. Cell Biol. 191, 751-760
   Abstract »    Full Text »    PDF »
Cep152 acts as a scaffold for recruitment of Plk4 and CPAP to the centrosome.
O. Cizmecioglu, M. Arnold, R. Bahtz, F. Settele, L. Ehret, U. Haselmann-Weiss, C. Antony, and I. Hoffmann (2010)
J. Cell Biol. 191, 731-739
   Abstract »    Full Text »    PDF »
Dishevelled, a Wnt signalling component, is involved in mitotic progression in cooperation with Plk1.
K. Kikuchi, Y. Niikura, K. Kitagawa, and A. Kikuchi (2010)
EMBO J. 29, 3470-3483
   Abstract »    Full Text »    PDF »
Plk1 Regulates Both ASAP Localization and Its Role in Spindle Pole Integrity.
G. Eot-Houllier, M. Venoux, S. Vidal-Eychenie, M.-T. Hoang, D. Giorgi, and S. Rouquier (2010)
J. Biol. Chem. 285, 29556-29568
   Abstract »    Full Text »    PDF »
Multisite phosphorylation of Erk5 in mitosis.
E. DIaz-RodrIguez and A. Pandiella (2010)
J. Cell Sci. 123, 3146-3156
   Abstract »    Full Text »    PDF »
Polo Kinase Interacts with RacGAP50C and Is Required to Localize the Cytokinesis Initiation Complex.
S. Ebrahimi, H. Fraval, M. Murray, R. Saint, and S. L. Gregory (2010)
J. Biol. Chem. 285, 28667-28673
   Abstract »    Full Text »    PDF »
Phosphorylation of CLIP-170 by Plk1 and CK2 promotes timely formation of kinetochore-microtubule attachments.
H. Li, X. S. Liu, X. Yang, Y. Wang, Y. Wang, J. R. Turner, and X. Liu (2010)
EMBO J. 29, 2953-2965
   Abstract »    Full Text »    PDF »
Centrobin/NIP2 Is a Microtubule Stabilizer Whose Activity Is Enhanced by PLK1 Phosphorylation during Mitosis.
J. Lee, Y. Jeong, S. Jeong, and K. Rhee (2010)
J. Biol. Chem. 285, 25476-25484
   Abstract »    Full Text »    PDF »
Oscillations in Cdc14 release and sequestration reveal a circuit underlying mitotic exit.
R. Manzoni, F. Montani, C. Visintin, F. Caudron, A. Ciliberto, and R. Visintin (2010)
J. Cell Biol. 190, 209-222
   Abstract »    Full Text »    PDF »
Liaisons between Survivin and Plk1 during Cell Division and Cell Death.
R. Colnaghi and S. P. Wheatley (2010)
J. Biol. Chem. 285, 22592-22604
   Abstract »    Full Text »    PDF »
Phosphorylation of Mixed Lineage Leukemia 5 by Cdc2 Affects Its Cellular Distribution and Is Required for Mitotic Entry.
J. Liu, X. N. Wang, F. Cheng, Y.-C. Liou, and L.-W. Deng (2010)
J. Biol. Chem. 285, 20904-20914
   Abstract »    Full Text »    PDF »
Quantitative Site-specific Phosphorylation Dynamics of Human Protein Kinases during Mitotic Progression.
K. Dulla, H. Daub, R. Hornberger, E. A. Nigg, and R. Korner (2010)
Mol. Cell. Proteomics 9, 1167-1181
   Abstract »    Full Text »    PDF »
The novel mouse Polo-like kinase 5 responds to DNA damage and localizes in the nucleolus.
Z. Andrysik, W. Z. Bernstein, L. Deng, D. L. Myer, Y. Q. Li, J. A. Tischfield, P. J. Stambrook, and E. M. Bahassi (2010)
Nucleic Acids Res. 38, 2931-2943
   Abstract »    Full Text »    PDF »
Activation of cyclin B1-Cdk1 synchronizes events in the nucleus and the cytoplasm at mitosis.
O. Gavet and J. Pines (2010)
J. Cell Biol. 189, 247-259
   Abstract »    Full Text »    PDF »
Requirements and Reasons for Effective Inhibition of the Anaphase Promoting Complex Activator Cdh1.
J. A. Robbins and F. R. Cross (2010)
Mol. Biol. Cell 21, 914-925
   Abstract »    Full Text »    PDF »
Understanding protein phosphorylation on a systems level.
J. Lin, Z. Xie, H. Zhu, and J. Qian (2010)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Fission yeast Pcp1 links polo kinase-mediated mitotic entry to {gamma}-tubulin-dependent spindle formation.
C. S. Fong, M. Sato, and T. Toda (2010)
EMBO J. 29, 120-130
   Abstract »    Full Text »    PDF »
A Conserved Phosphorylation Site within the Forkhead Domain of FoxM1B Is Required for Its Activation by Cyclin-CDK1.
Y.-J. Chen, C. Dominguez-Brauer, Z. Wang, J. M. Asara, R. H. Costa, A. L. Tyner, L. F. Lau, and P. Raychaudhuri (2009)
J. Biol. Chem. 284, 30695-30707
   Abstract »    Full Text »    PDF »
The Peptidyl-Prolyl Isomerase Pin1 Regulates Cytokinesis through Cep55.
A. van der Horst and K. K. Khanna (2009)
Cancer Res. 69, 6651-6659
   Abstract »    Full Text »    PDF »
Polo-like Kinase 1 (PLK1) Regulates Interferon (IFN) Induction by MAVS.
D. Vitour, S. Dabo, M. Ahmadi Pour, M. Vilasco, P.-O. Vidalain, Y. Jacob, M. Mezel-Lemoine, S. Paz, M. Arguello, R. Lin, et al. (2009)
J. Biol. Chem. 284, 21797-21809
   Abstract »    Full Text »    PDF »
Plk1-mediated Phosphorylation of Topors Regulates p53 Stability.
X. Yang, H. Li, Z. Zhou, W.-H. Wang, A. Deng, O. Andrisani, and X. Liu (2009)
J. Biol. Chem. 284, 18588-18592
   Abstract »    Full Text »    PDF »
Sequential phosphorylation of Nedd1 by Cdk1 and Plk1 is required for targeting of the {gamma}TuRC to the centrosome.
X. Zhang, Q. Chen, J. Feng, J. Hou, F. Yang, J. Liu, Q. Jiang, and C. Zhang (2009)
J. Cell Sci. 122, 2240-2251
   Abstract »    Full Text »    PDF »
Functional Dynamics of Polo-Like Kinase 1 at the Centrosome.
K. Kishi, M. A. T. M. van Vugt, K.-i. Okamoto, Y. Hayashi, and M. B. Yaffe (2009)
Mol. Cell. Biol. 29, 3134-3150
   Abstract »    Full Text »    PDF »
Polo-Like Kinase (PLK) Inhibitors in Preclinical and Early Clinical Development in Oncology.
P. Schoffski (2009)
Oncologist 14, 559-570
   Abstract »    Full Text »    PDF »
The decision to enter mitosis: feedback and redundancy in the mitotic entry network.
A. Lindqvist, V. Rodriguez-Bravo, and R. H. Medema (2009)
J. Cell Biol. 185, 193-202
   Abstract »    Full Text »    PDF »
Stimulation of Polo-Like Kinase 3 mRNA Decay by Tristetraprolin.
T. J. Horner, W. S. Lai, D. J. Stumpo, and P. J. Blackshear (2009)
Mol. Cell. Biol. 29, 1999-2010
   Abstract »    Full Text »    PDF »
Evidence for Regulation of Mitotic Progression through Temporal Phosphorylation and Dephosphorylation of CK2{alpha}.
N. A. St-Denis, D. R. Derksen, and D. W. Litchfield (2009)
Mol. Cell. Biol. 29, 2068-2081
   Abstract »    Full Text »    PDF »
Regulated degradation of FANCM in the Fanconi anemia pathway during mitosis.
Y. Kee, J. M. Kim, and A. D'Andrea (2009)
Genes & Dev. 23, 555-560
   Abstract »    Full Text »    PDF »
Deficiency in Chromosome Congression by the Inhibition of Plk1 Polo Box Domain-dependent Recognition.
N. Watanabe, T. Sekine, M. Takagi, J.-i. Iwasaki, N. Imamoto, H. Kawasaki, and H. Osada (2009)
J. Biol. Chem. 284, 2344-2353
   Abstract »    Full Text »    PDF »
Polo-Like Kinase 1 Is Essential for Early Embryonic Development and Tumor Suppression.
L.-Y. Lu, J. L. Wood, K. Minter-Dykhouse, L. Ye, T. L. Saunders, X. Yu, and J. Chen (2008)
Mol. Cell. Biol. 28, 6870-6876
   Abstract »    Full Text »    PDF »
Phosphorylation of MyoGEF on Thr-574 by Plk1 Promotes MyoGEF Localization to the Central Spindle.
M. Asiedu, D. Wu, F. Matsumura, and Q. Wei (2008)
J. Biol. Chem. 283, 28392-28400
   Abstract »    Full Text »    PDF »
Polo-like kinase is required for Golgi and bilobe biogenesis in Trypanosoma brucei.
C. L. de Graffenried, H. H. Ho, and G. Warren (2008)
J. Cell Biol. 181, 431-438
   Abstract »    Full Text »    PDF »
Sequestration of Polo kinase to microtubules by phosphopriming-independent binding to Map205 is relieved by phosphorylation at a CDK site in mitosis.
V. Archambault, P. P. D'Avino, M. J. Deery, K. S. Lilley, and D. M. Glover (2008)
Genes & Dev. 22, 2707-2720
   Abstract »    Full Text »    PDF »
Plk1 Phosphorylation of TRF1 Is Essential for Its Binding to Telomeres.
Z.-Q. Wu, X. Yang, G. Weber, and X. Liu (2008)
J. Biol. Chem. 283, 25503-25513
   Abstract »    Full Text »    PDF »
Henipavirus V Protein Association with Polo-Like Kinase Reveals Functional Overlap with STAT1 Binding and Interferon Evasion.
L. E. Ludlow, M. K. Lo, J. J. Rodriguez, P. A. Rota, and C. M. Horvath (2008)
J. Virol. 82, 6259-6271
   Abstract »    Full Text »    PDF »
GRASP55 Regulates Golgi Ribbon Formation.
T. N. Feinstein and A. D. Linstedt (2008)
Mol. Biol. Cell 19, 2696-2707
   Abstract »    Full Text »    PDF »
Bora and the Kinase Aurora A Cooperatively Activate the Kinase Plk1 and Control Mitotic Entry.
A. Seki, J. A. Coppinger, C.-Y. Jang, J. R. Yates, and G. Fang (2008)
Science 320, 1655-1658
   Abstract »    Full Text »    PDF »
Inhibitory Role of Plk1 in the Regulation of p73-dependent Apoptosis through Physical Interaction and Phosphorylation.
N. Koida, T. Ozaki, H. Yamamoto, S. Ono, T. Koda, K. Ando, R. Okoshi, T. Kamijo, K. Omura, and A. Nakagawara (2008)
J. Biol. Chem. 283, 8555-8563
   Abstract »    Full Text »    PDF »
Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6.
Y. Nishi, E. Rogers, S. M. Robertson, and R. Lin (2008)
Development 135, 687-697
   Abstract »    Full Text »    PDF »
Role for Plk1 phosphorylation of Hbo1 in regulation of replication licensing.
Z.-Q. Wu and X. Liu (2008)
PNAS 105, 1919-1924
   Abstract »    Full Text »    PDF »
Phosphorylation-dependent Binding of Cyclin B1 to a Cdc6-like Domain of Human Separase.
D. Boos, C. Kuffer, R. Lenobel, R. Korner, and O. Stemmann (2008)
J. Biol. Chem. 283, 816-823
   Abstract »    Full Text »    PDF »
PepCyber:P~PEP: a database of human protein protein interactions mediated by phosphoprotein-binding domains.
W. Gong, D. Zhou, Y. Ren, Y. Wang, Z. Zuo, Y. Shen, F. Xiao, Q. Zhu, A. Hong, X. Zhou, et al. (2008)
Nucleic Acids Res. 36, D679-D683
   Abstract »    Full Text »    PDF »
Cell type dependent effects of Polo-like kinase 1 inhibition compared with targeted polo box interference in cancer cell lines.
J. Fink, K. Sanders, A. Rippl, S. Finkernagel, T. L. Beckers, and M. Schmidt (2007)
Mol. Cancer Ther. 6, 3189-3197
   Abstract »    Full Text »    PDF »
Identification of a novel mitotic phosphorylation motif associated with protein localization to the mitotic apparatus.
F. Yang, D. G. Camp II, M. A. Gritsenko, Q. Luo, R. T. Kelly, T. R. W. Clauss, W. R. Brinkley, R. D. Smith, and D. L. Stenoien (2007)
J. Cell Sci. 120, 4060-4070
   Abstract »    Full Text »    PDF »
Mechanism of degradation of CPEB during Xenopus oocyte maturation.
D. Setoyama, M. Yamashita, and N. Sagata (2007)
PNAS 104, 18001-18006
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882