Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 299 (5615): 2039-2045

Copyright © 2003 by the American Association for the Advancement of Science

Identification of Hedgehog Pathway Components by RNAi in Drosophila Cultured Cells

Lawrence Lum,1 Shenqin Yao,1 Brian Mozer,2 Alessandra Rovescalli,2 Doris Von Kessler,1 Marshall Nirenberg,2 Philip A. Beachy1*

Classical genetic screens can be limited by the selectivity of mutational targeting, the complexities of anatomically based phenotypic analysis, or difficulties in subsequent gene identification. Focusing on signaling response to the secreted morphogen Hedgehog (Hh), we used RNA interference (RNAi) and a quantitative cultured cell assay to systematically screen functional roles of all kinases and phosphatases, and subsequently 43% of predicted Drosophila genes. Two gene products reported to function in Wingless (Wg) signaling were identified as Hh pathway components: a cell surface protein (Dally-like protein) required for Hh signal reception, and casein kinase 1alpha , a candidate tumor suppressor that regulates basal activities of both Hh and Wg pathways. This type of cultured cell-based functional genomics approach may be useful in the systematic analysis of other biological processes.

1 Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
2 Laboratory of Biochemical Genetics, NHLBI, NIH, Bethesda, MD 20892, USA.
*   To whom correspondence should be addressed. E-mail: pbeachy{at}

Glypican-3 binds to Frizzled and plays a direct role in the stimulation of canonical Wnt signaling.
M. Capurro, T. Martin, W. Shi, and J. Filmus (2014)
J. Cell Sci. 127, 1565-1575
   Abstract »    Full Text »    PDF »
Heparan Sulfate Proteoglycans Containing a Glypican 5 Core and 2-O-Sulfo-iduronic Acid Function as Sonic Hedgehog Co-receptors to Promote Proliferation.
R. M. Witt, M.-L. Hecht, M. F. Pazyra-Murphy, S. M. Cohen, C. Noti, T. H. van Kuppevelt, M. Fuller, J. A. Chan, J. J. Hopwood, P. H. Seeberger, et al. (2013)
J. Biol. Chem. 288, 26275-26288
   Abstract »    Full Text »    PDF »
The Drosophila GOLPH3 homolog regulates the biosynthesis of heparan sulfate proteoglycans by modulating the retrograde trafficking of exostosins.
W.-L. Chang, C.-W. Chang, Y.-Y. Chang, H.-H. Sung, M.-D. Lin, S.-C. Chang, C.-H. Chen, C.-W. Huang, K.-S. Tung, and T.-B. Chou (2013)
Development 140, 2798-2807
   Abstract »    Full Text »    PDF »
Integrative approaches for predicting protein function and prioritizing genes for complex phenotypes using protein interaction networks.
X. Ma, T. Chen, and F. Sun (2013)
Brief Bioinform
   Abstract »    Full Text »    PDF »
The Drosophila WIF1 homolog Shifted maintains glypican-independent Hedgehog signaling and interacts with the Hedgehog co-receptors Ihog and Boi.
A. Avanesov and S. S. Blair (2013)
Development 140, 107-116
   Abstract »    Full Text »    PDF »
The Hedgehog Signal Transduction Network.
D. J. Robbins, D. L. Fei, and N. A. Riobo (2012)
Science Signaling 5, re6
   Abstract »    Full Text »    PDF »
The WIF domain of the human and Drosophila Wif-1 secreted factors confers specificity for Wnt or Hedgehog.
D. Sanchez-Hernandez, J. Sierra, J. R. Ortigao-Farias, and I. Guerrero (2012)
Development 139, 3849-3858
   Abstract »    Full Text »    PDF »
Dally and Notum regulate the switch between low and high level Hedgehog pathway signalling.
K. L. Ayers, R. Mteirek, A. Cervantes, L. Lavenant-Staccini, P. P. Therond, and A. Gallet (2012)
Development 139, 3168-3179
   Abstract »    Full Text »    PDF »
Hedgehog Secretion and Signal Transduction in Vertebrates.
K. E. Ryan and C. Chiang (2012)
J. Biol. Chem. 287, 17905-17913
   Abstract »    Full Text »    PDF »
A Screen for X-Linked Mutations Affecting Drosophila Photoreceptor Differentiation Identifies Casein Kinase 1{alpha} as an Essential Negative Regulator of Wingless Signaling.
K. Legent, J. Steinhauer, M. Richard, and J. E. Treisman (2012)
Genetics 190, 601-616
   Abstract »    Full Text »    PDF »
Secreted Wingless-interacting molecule (Swim) promotes long-range signaling by maintaining Wingless solubility.
K. A. Mulligan, C. Fuerer, W. Ching, M. Fish, K. Willert, and R. Nusse (2012)
PNAS 109, 370-377
   Abstract »    Full Text »    PDF »
Drosophila G-protein-coupled receptor kinase 2 regulates cAMP-dependent Hedgehog signaling.
S. Cheng, D. Maier, and D. R. Hipfner (2012)
Development 139, 85-94
   Abstract »    Full Text »    PDF »
Increased hedgehog signaling in postnatal kidney results in aberrant activation of nephron developmental programs.
B. Li, A. A. Rauhauser, J. Dai, R. Sakthivel, P. Igarashi, A. M. Jetten, and M. Attanasio (2011)
Hum. Mol. Genet. 20, 4155-4166
   Abstract »    Full Text »    PDF »
The Hedgehog-induced Smoothened conformational switch assembles a signaling complex that activates Fused by promoting its dimerization and phosphorylation.
Q. Shi, S. Li, J. Jia, and J. Jiang (2011)
Development 138, 4219-4231
   Abstract »    Full Text »    PDF »
Structure of the protein core of the glypican Dally-like and localization of a region important for hedgehog signaling.
M.-S. Kim, A. M. Saunders, B. Y. Hamaoka, P. A. Beachy, and D. J. Leahy (2011)
PNAS 108, 13112-13117
   Abstract »    Full Text »    PDF »
Drosophila RNAi screening in a postgenomic world.
C. Bakal (2011)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Lessons from morpholino-based screening in zebrafish.
V. M. Bedell, S. E. Westcot, and S. C. Ekker (2011)
Briefings in Functional Genomics
   Abstract »    Full Text »    PDF »
Sequential Phosphorylation of Smoothened Transduces Graded Hedgehog Signaling.
Y. Su, J. K. Ospina, J. Zhang, A. P. Michelson, A. M. Schoen, and A. J. Zhu (2011)
Science Signaling 4, ra43
   Abstract »    Full Text »    PDF »
Dual Roles of the Cardin-Weintraub Motif in Multimeric Sonic Hedgehog.
P. Farshi, S. Ohlig, U. Pickhinke, S. Hoing, K. Jochmann, R. Lawrence, R. Dreier, T. Dierker, and K. Grobe (2011)
J. Biol. Chem. 286, 23608-23619
   Abstract »    Full Text »    PDF »
An RNAi-based chemical genetic screen identifies three small-molecule inhibitors of the Wnt/wingless signaling pathway.
F. C. Gonsalves, K. Klein, B. B. Carson, S. Katz, L. A. Ekas, S. Evans, R. Nagourney, T. Cardozo, A. M. C. Brown, and R. DasGupta (2011)
PNAS 108, 5954-5963
   Abstract »    Full Text »    PDF »
Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria.
S. Man, R. Cheng, C. Miao, Q. Gong, Y. Gu, X. Lu, F. Han, and W. Yu (2011)
Nucleic Acids Res. 39, e50
   Abstract »    Full Text »    PDF »
Sonic Hedgehog-induced Proliferation Requires Specific Gα Inhibitory Proteins.
M. Barzi, D. Kostrz, A. Menendez, and S. Pons (2011)
J. Biol. Chem. 286, 8067-8074
   Abstract »    Full Text »    PDF »
Glypican-5 stimulates rhabdomyosarcoma cell proliferation by activating Hedgehog signaling.
F. Li, W. Shi, M. Capurro, and J. Filmus (2011)
J. Cell Biol. 192, 691-704
   Abstract »    Full Text »    PDF »
Genome-Wide RNAi Screen Reveals Disease-Associated Genes That Are Common to Hedgehog and Wnt Signaling.
L. S. Jacob, X. Wu, M. E. Dodge, C.-W. Fan, O. Kulak, B. Chen, W. Tang, B. Wang, J. F. Amatruda, and L. Lum (2011)
Science Signaling 4, ra4
   Abstract »    Full Text »    PDF »
Drosophila Boi limits Hedgehog levels to suppress follicle stem cell proliferation.
T. R. Hartman, D. Zinshteyn, H. K. Schofield, E. Nicolas, A. Okada, and A. M. O'Reilly (2010)
J. Cell Biol. 191, 943-952
   Abstract »    Full Text »    PDF »
Dissecting the Biological Role of Mucin-type O-Glycosylation Using RNA Interference in Drosophila Cell Culture.
L. Zhang and K. G. T. Hagen (2010)
J. Biol. Chem. 285, 34477-34484
   Abstract »    Full Text »    PDF »
Interactions between Hedgehog proteins and their binding partners come into view.
P. A. Beachy, S. G. Hymowitz, R. A. Lazarus, D. J. Leahy, and C. Siebold (2010)
Genes & Dev. 24, 2001-2012
   Abstract »    Full Text »    PDF »
G protein-coupled receptor kinase 2 promotes high-level Hedgehog signaling by regulating the active state of Smo through kinase-dependent and kinase-independent mechanisms in Drosophila.
Y. Chen, S. Li, C. Tong, Y. Zhao, B. Wang, Y. Liu, J. Jia, and J. Jiang (2010)
Genes & Dev. 24, 2054-2067
   Abstract »    Full Text »    PDF »
The cell-surface proteins Dally-like and Ihog differentially regulate Hedgehog signaling strength and range during development.
D. Yan, Y. Wu, Y. Yang, T. Y. Belenkaya, X. Tang, and X. Lin (2010)
Development 137, 2033-2044
   Abstract »    Full Text »    PDF »
Dally-like core protein and its mammalian homologues mediate stimulatory and inhibitory effects on Hedgehog signal response.
E. H. Williams, W. N. Pappano, A. M. Saunders, M.-S. Kim, D. J. Leahy, and P. A. Beachy (2010)
PNAS 107, 5869-5874
   Abstract »    Full Text »    PDF »
Insights to transcriptional networks by using high throughput RNAi strategies.
J. Mattila and O. Puig (2010)
Briefings in Functional Genomics 9, 43-52
   Abstract »    Full Text »    PDF »
Genetic and biochemical definition of the Hedgehog receptor.
X. Zheng, R. K. Mann, N. Sever, and P. A. Beachy (2010)
Genes & Dev. 24, 57-71
   Abstract »    Full Text »    PDF »
Effect of glypican-1 covalently attached chains on turkey myogenic satellite cell proliferation, differentiation, and fibroblast growth factor 2 responsiveness.
Y. Song, K. E. Nestor, D. C. McFarland, and S. G. Velleman (2010)
Poultry Science 89, 123-134
   Abstract »    Full Text »    PDF »
Convergent extension movements in growth plate chondrocytes require gpi-anchored cell surface proteins.
M. J. Ahrens, Y. Li, H. Jiang, and A. T. Dudley (2009)
Development 136, 3463-3474
   Abstract »    Full Text »    PDF »
Shaping Morphogen Gradients by Proteoglycans.
D. Yan and X. Lin (2009)
Cold Spring Harb Perspect Biol 1, a002493
   Abstract »    Full Text »    PDF »
Overgrowth of a mouse model of Simpson- Golabi-Behmel syndrome is partly mediated by Indian Hedgehog.
M. I. Capurro, F. Li, and J. Filmus (2009)
EMBO Rep. 10, 901-907
   Abstract »    Full Text »    PDF »
Infection induces a survival program and local remodeling in the airway epithelium of the fly.
C. Wagner, K. Isermann, and T. Roeder (2009)
FASEB J 23, 2045-2054
   Abstract »    Full Text »    PDF »
Specific gene silencing by artificial trans-encoded small noncoding RNAs in bacteria.
R. Cheng, C. Miao, Q. Gong, Y. Gu, X. Lu, F. Han, and W. Yu (2009)
Nucleic Acids Res.
   Abstract »    Full Text »    PDF »
PP4 and PP2A regulate Hedgehog signaling by controlling Smo and Ci phosphorylation.
H. Jia, Y. Liu, W. Yan, and J. Jia (2009)
Development 136, 307-316
   Abstract »    Full Text »    PDF »
Kinome siRNA Screen Identifies Regulators of Ciliogenesis and Hedgehog Signal Transduction.
M. Evangelista, T. Y. Lim, J. Lee, L. Parker, A. Ashique, A. S. Peterson, W. Ye, D. P. Davis, and F. J. de Sauvage (2008)
Science Signaling 1, ra7
   Abstract »    Full Text »    PDF »
A Unique Protection Signal in Cubitus interruptus Prevents Its Complete Proteasomal Degradation.
Y. Wang and M. A. Price (2008)
Mol. Cell. Biol. 28, 5555-5568
   Abstract »    Full Text »    PDF »
Hedgehog: functions and mechanisms.
M. Varjosalo and J. Taipale (2008)
Genes & Dev. 22, 2454-2472
   Abstract »    Full Text »    PDF »
A Screen for Modifiers of Hedgehog Signaling in Drosophila melanogaster Identifies swm and mts.
D. J. Casso, S. Liu, D. D. Iwaki, S. K. Ogden, and T. B. Kornberg (2008)
Genetics 178, 1399-1413
   Abstract »    Full Text »    PDF »
RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia.
J. W. Tyner, D. K. Walters, S. G. Willis, M. Luttropp, J. Oost, M. Loriaux, H. Erickson, A. S. Corbin, T. O'Hare, M. C. Heinrich, et al. (2008)
Blood 111, 2238-2245
   Abstract »    Full Text »    PDF »
Silencing of genes in cultured Drosophila neurons by RNA interference.
S. K. Sharma and M. Nirenberg (2007)
PNAS 104, 12925-12930
   Abstract »    Full Text »    PDF »
Heparan sulfate proteoglycans at a glance.
C. A. Kirkpatrick and S. B. Selleck (2007)
J. Cell Sci. 120, 1829-1832
   Full Text »    PDF »
Hedgehog signaling.
M. Varjosalo and J. Taipale (2007)
J. Cell Sci. 120, 3-6
   Full Text »    PDF »
Applications of High-Throughput RNA Interference Screens to Problems in Cell and Developmental Biology.
N. Perrimon and B. Mathey-Prevot (2007)
Genetics 175, 7-16
   Abstract »    Full Text »    PDF »
Small Interfering RNA Screens Reveal Enhanced Cisplatin Cytotoxicity in Tumor Cells Having both BRCA Network and TP53 Disruptions.
S. R. Bartz, Z. Zhang, J. Burchard, M. Imakura, M. Martin, A. Palmieri, R. Needham, J. Guo, M. Gordon, N. Chung, et al. (2006)
Mol. Cell. Biol. 26, 9377-9386
   Abstract »    Full Text »    PDF »
Structure of a heparin-dependent complex of Hedgehog and Ihog.
J. S. McLellan, S. Yao, X. Zheng, B. V. Geisbrecht, R. Ghirlando, P. A. Beachy, and D. J. Leahy (2006)
PNAS 103, 17208-17213
   Abstract »    Full Text »    PDF »
Human Receptors Patched and Smoothened Partially Transduce Hedgehog Signal When Expressed in Drosophila Cells.
M. De Rivoyre, L. Ruel, M. Varjosalo, A. Loubat, M. Bidet, P. Therond, and I. Mus-Veteau (2006)
J. Biol. Chem. 281, 28584-28595
   Abstract »    Full Text »    PDF »
How does cholesterol affect the way Hedgehog works?.
F. Wendler, X. Franch-Marro, and J.-P. Vincent (2006)
Development 133, 3055-3061
   Abstract »    Full Text »    PDF »
A genomewide screen for components of the RNAi pathway in Drosophila cultured cells.
S. Dorner, L. Lum, M. Kim, R. Paro, P. A. Beachy, and R. Green (2006)
PNAS 103, 11880-11885
   Abstract »    Full Text »    PDF »
C-terminal-binding protein directly activates and represses Wnt transcriptional targets in Drosophila.
M. Fang, J. Li, T. Blauwkamp, C. Bhambhani, N. Campbell, and K. M. Cadigan (2006)
EMBO J. 25, 2735-2745
   Abstract »    Full Text »    PDF »
Internalization is required for proper Wingless signaling in Drosophila melanogaster..
E. S. Seto and H. J. Bellen (2006)
J. Cell Biol. 173, 95-106
   Abstract »    Full Text »    PDF »
Identification of phosphatases for Smad in the BMP/DPP pathway.
H. B. Chen, J. Shen, Y. T. Ip, and L. Xu (2006)
Genes & Dev. 20, 648-653
   Abstract »    Full Text »    PDF »
Cellular phenotyping by RNAi.
F. Fuchs and M. Boutros (2006)
Briefings in Functional Genomics 5, 52-56
   Abstract »    Full Text »    PDF »
Signal dynamics in Sonic hedgehog tissue patterning.
K. Saha and D. V. Schaffer (2006)
Development 133, 889-900
   Abstract »    Full Text »    PDF »
CKI, there's more than one: casein kinase I family members in Wnt and Hedgehog signaling..
M. A. Price (2006)
Genes & Dev. 20, 399-410
   Abstract »    Full Text »    PDF »
Developmental control of nuclear morphogenesis and anchoring by charleston, identified in a functional genomic screen of Drosophila cellularisation.
F. Pilot, J.-M. Philippe, C. Lemmers, J.-P. Chauvin, and T. Lecuit (2006)
Development 133, 711-723
   Abstract »    Full Text »    PDF »
Genome-Scale Analysis Reveals Sst2 as the Principal Regulator of Mating Pheromone Signaling in the Yeast Saccharomyces cerevisiae.
S. A. Chasse, P. Flanary, S. C. Parnell, N. Hao, J. Y. Cha, D. P. Siderovski, and H. G. Dohlman (2006)
Eukaryot. Cell 5, 330-346
   Abstract »    Full Text »    PDF »
Hedgehog lipid modifications are required for Hedgehog stabilization in the extracellular matrix.
A. Callejo, C. Torroja, L. Quijada, and I. Guerrero (2006)
Development 133, 471-483
   Abstract »    Full Text »    PDF »
The endocytic pathway and formation of the Wingless morphogen gradient.
E. Marois, A. Mahmoud, and S. Eaton (2006)
Development 133, 307-317
   Abstract »    Full Text »    PDF »
Evidence for the direct involvement of {beta}TrCP in Gli3 protein processing.
B. Wang and Y. Li (2006)
PNAS 103, 33-38
   Abstract »    Full Text »    PDF »
Drosophila Genome-wide RNAi Screens: Are They Delivering the Promise?.
Cold Spring Harb Symp Quant Biol 71, 141-148
   Abstract »    PDF »
Signaling from Smo to Ci/Gli: conservation and divergence of Hedgehog pathways from Drosophila to vertebrates.
D. Huangfu and K. V. Anderson (2006)
Development 133, 3-14
   Abstract »    Full Text »    PDF »
Processing by Convertases Is Not Required for Glypican-3-induced Stimulation of Hepatocellular Carcinoma Growth.
M. I. Capurro, W. Shi, S. Sandal, and J. Filmus (2005)
J. Biol. Chem. 280, 41201-41206
   Abstract »    Full Text »    PDF »
Inhibitor of apoptosis 2 and TAK1-binding protein are components of the Drosophila Imd pathway.
A. Kleino, S. Valanne, J. Ulvila, J. Kallio, H. Myllymaki, H. Enwald, S. Stoven, M. Poidevin, R. Ueda, D. Hultmark, et al. (2005)
EMBO J. 24, 3423-3434
   Abstract »    Full Text »    PDF »
Glypican-3 Promotes the Growth of Hepatocellular Carcinoma by Stimulating Canonical Wnt Signaling.
M. I. Capurro, Y.-Y. Xiang, C. Lobe, and J. Filmus (2005)
Cancer Res. 65, 6245-6254
   Abstract »    Full Text »    PDF »
E-RNAi: a web application to design optimized RNAi constructs.
Z. Arziman, T. Horn, and M. Boutros (2005)
Nucleic Acids Res. 33, W582-W588
   Abstract »    Full Text »    PDF »
High-throughput RNAi screening in vitro: From cell lines to primary cells.
RNA 11, 985-993
   Abstract »    Full Text »    PDF »
A Screen for Genes Regulating the Wingless Gradient in Drosophila Embryos.
S. C. Desbordes, D. Chandraratna, and B. Sanson (2005)
Genetics 170, 749-766
   Abstract »    Full Text »    PDF »
The end of "naive reductionism": rise of systems biology or renaissance of physiology?.
K. Strange (2005)
Am J Physiol Cell Physiol 288, C968-C974
   Abstract »    Full Text »    PDF »
Glypicans shunt the Wingless signal between local signalling and further transport.
X. Franch-Marro, O. Marchand, E. Piddini, S. Ricardo, C. Alexandre, and J.-P. Vincent (2005)
Development 132, 659-666
   Abstract »    Full Text »    PDF »
Drosophila glypicans Dally and Dally-like shape the extracellular Wingless morphogen gradient in the wing disc.
C. Han, D. Yan, T. Y. Belenkaya, and X. Lin (2005)
Development 132, 667-679
   Abstract »    Full Text »    PDF »
Identification of the Wnt signaling activator leucine-rich repeat in Flightless interaction protein 2 by a genome-wide functional analysis.
J. Liu, A. G. Bang, C. Kintner, A. P. Orth, S. K. Chanda, S. Ding, and P. G. Schultz (2005)
PNAS 102, 1927-1932
   Abstract »    Full Text »    PDF »
The Loss of Glypican-3 Induces Alterations in Wnt Signaling.
H. H. Song, W. Shi, Y.-Y. Xiang, and J. Filmus (2005)
J. Biol. Chem. 280, 2116-2125
   Abstract »    Full Text »    PDF »
Dissecting Cancer Pathways and Vulnerabilities with RNAi.
Cold Spring Harb Symp Quant Biol 70, 435-444
   Abstract »    PDF »
Extensive phosphorylation of Smoothened in Hedgehog pathway activation.
C. Zhang, E. H. Williams, Y. Guo, L. Lum, and P. A. Beachy (2004)
PNAS 101, 17900-17907
   Abstract »    Full Text »    PDF »
Functions of heparan sulfate proteoglycans in cell signaling during development.
X. Lin (2004)
Development 131, 6009-6021
   Abstract »    Full Text »    PDF »
Incredible journey: how do developmental signals travel through tissue?.
A. J. Zhu and M. P. Scott (2004)
Genes & Dev. 18, 2985-2997
   Abstract »    Full Text »    PDF »
Genes required for Drosophila nervous system development identified by RNA interference.
A. I. Ivanov, A. C. Rovescalli, P. Pozzi, S. Yoo, B. Mozer, H.-P. Li, S.-H. Yu, H. Higashida, V. Guo, M. Spencer, et al. (2004)
PNAS 101, 16216-16221
   Abstract »    Full Text »    PDF »
ORFeome Cloning and Systems Biology: Standardized Mass Production of the Parts From the Parts-List.
M. A. Brasch, J. L. Hartley, and M. Vidal (2004)
Genome Res. 14, 2001-2009
   Abstract »    Full Text »    PDF »
RNA interference: from model organisms towards therapy for neural and neuromuscular disorders.
S. D. Buckingham, B. Esmaeili, M. Wood, and D. B. Sattelle (2004)
Hum. Mol. Genet. 13, R275-R288
   Abstract »    Full Text »    PDF »
Effects of Length and Location on the Cellular Response to Double-Stranded RNA.
Q. Wang and G. G. Carmichael (2004)
Microbiol. Mol. Biol. Rev. 68, 432-452
   Abstract »    Full Text »    PDF »
Casein Kinase I{epsilon} Plays a Functional Role in the Transforming Growth Factor-{beta} Signaling Pathway.
D. S. Waddell, N. T. Liberati, X. Guo, J. P. Frederick, and X.-F. Wang (2004)
J. Biol. Chem. 279, 29236-29246
   Abstract »    Full Text »    PDF »
The Hedgehog Response Network: Sensors, Switches, and Routers.
L. Lum and P. A. Beachy (2004)
Science 304, 1755-1759
   Abstract »    Full Text »    PDF »
Wingless, Hedgehog and Heparan Sulfate Proteoglycans.
N. Perrimon, U. Hacker, B. Sanson, and T. Tabata (2004)
Development 131, 2509-2513
   Full Text »    PDF »
Patched controls the Hedgehog gradient by endocytosis in a dynamin-dependent manner, but this internalization does not play a major role in signal transduction.
C. Torroja, N. Gorfinkiel, and I. Guerrero (2004)
Development 131, 2395-2408
   Abstract »    Full Text »    PDF »
Abrogation of heparan sulfate synthesis in Drosophila disrupts the Wingless, Hedgehog and Decapentaplegic signaling pathways.
D. J. Bornemann, J. E. Duncan, W. Staatz, S. Selleck, and R. Warrior (2004)
Development 131, 1927-1938
   Abstract »    Full Text »    PDF »
Small interfering RNA production by enzymatic engineering of DNA (SPEED).
B. Luo, A. D. Heard, and H. F. Lodish (2004)
PNAS 101, 5494-5499
   Abstract »    Full Text »    PDF »
Biochemical Characterization of the Drosophila Wingless Signaling Pathway Based on RNA Interference.
H. Matsubayashi, S. Sese, J.-S. Lee, T. Shirakawa, T. Iwatsubo, T. Tomita, and S.-i. Yanagawa (2004)
Mol. Cell. Biol. 24, 2012-2024
   Abstract »    Full Text »    PDF »
Syndecan-2 is essential for angiogenic sprouting during zebrafish development.
E. Chen, S. Hermanson, and S. C. Ekker (2004)
Blood 103, 1710-1719
   Abstract »    Full Text »    PDF »
The Kinesin-related Protein Costal2 Associates with Membranes in a Hedgehog-sensitive, Smoothened-independent Manner.
M. A. Stegman, J. A. Goetz, M. Ascano Jr., S. K. Ogden, K. E. Nybakken, and D. J. Robbins (2004)
J. Biol. Chem. 279, 7064-7071
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882