Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 300 (5616): 108-112

Copyright © 2003 by the American Association for the Advancement of Science

Gating the Selectivity Filter in ClC Chloride Channels

Raimund Dutzler, Ernest B. Campbell, Roderick MacKinnon*

ClC channels conduct chloride (Cl-) ions across cell membranes and thereby govern the electrical activity of muscle cells and certain neurons, the transport of fluid and electrolytes across epithelia, and the acidification of intracellular vesicles. The structural basis of ClC channel gating was studied. Crystal structures of wild-type and mutant Escherichia coli ClC channels bound to a monoclonal Fab fragment reveal three Cl- binding sites within the 15-angstrom neck of an hourglass-shaped pore. The Cl- binding site nearest the extracellular solution can be occupied either by a Cl- ion or by a glutamate carboxyl group. Mutations of this glutamate residue in Torpedo ray ClC channels alter gating in electrophysiological assays. These findings reveal a form of gating in which the glutamate carboxyl group closes the pore by mimicking a Cl- ion.

Howard Hughes Medical Institute, Laboratory of Molecular Neurobiology and Biophysics, Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
*   To whom correspondence should be addressed. E-mail: mackinn{at}

Bioinformatics approaches for functional annotation of membrane proteins.
M. M. Gromiha and Y.-Y. Ou (2014)
Brief Bioinform 15, 155-168
   Abstract »    Full Text »    PDF »
Prerequisites to proton transport in the bacterial ClC-ec1 Cl-/H+ exchanger.
M. Tarek (2014)
PNAS 111, 1668-1669
   Full Text »    PDF »
Water access points and hydration pathways in CLC H+/Cl- transporters.
W. Han, R. C. Cheng, M. C. Maduke, and E. Tajkhorshid (2014)
PNAS 111, 1819-1824
   Abstract »    Full Text »    PDF »
The Voltage-Gated Anion Channels Encoded by clh-3 Regulate Egg Laying in C. elegans by Modulating Motor Neuron Excitability.
R. Branicky, H. Miyazaki, K. Strange, and W. R. Schafer (2014)
J. Neurosci. 34, 764-775
   Abstract »    Full Text »    PDF »
A single point mutation reveals gating of the human ClC-5 Cl-/H+ antiporter.
S. De Stefano, M. Pusch, and G. Zifarelli (2013)
J. Physiol. 591, 5879-5893
   Abstract »    Full Text »    PDF »
Common Gating of Both CLC Transporter Subunits Underlies Voltage-dependent Activation of the 2Cl-/1H+ Exchanger ClC-7/Ostm1.
C. F. Ludwig, F. Ullrich, L. Leisle, T. Stauber, and T. J. Jentsch (2013)
J. Biol. Chem. 288, 28611-28619
   Abstract »    Full Text »    PDF »
C-Terminus-Mediated Voltage Gating of Arabidopsis Guard Cell Anion Channel QUAC1.
P. Mumm, D. Imes, E. Martinoia, K. A. S. Al-Rasheid, D. Geiger, I. Marten, and R. Hedrich (2013)
Mol Plant 6, 1550-1563
   Abstract »    Full Text »    PDF »
A Conserved Asparagine in a P-type Proton Pump Is Required for Efficient Gating of Protons.
K. Ekberg, A. G. Wielandt, M. J. Buch-Pedersen, and M. G. Palmgren (2013)
J. Biol. Chem. 288, 9610-9618
   Abstract »    Full Text »    PDF »
Functional characterization of a ClC transporter by solid-supported membrane electrophysiology.
J. Garcia-Celma, A. Szydelko, and R. Dutzler (2013)
J. Gen. Physiol. 141, 479-491
   Abstract »    Full Text »    PDF »
Dissecting a regulatory calcium-binding site of CLC-K kidney chloride channels.
A. Gradogna, C. Fenollar-Ferrer, L. R. Forrest, and M. Pusch (2012)
J. Gen. Physiol. 140, 681-696
   Abstract »    Full Text »    PDF »
Fluoride resistance and transport by riboswitch-controlled CLC antiporters.
R. B. Stockbridge, H.-H. Lim, R. Otten, C. Williams, T. Shane, Z. Weinberg, and C. Miller (2012)
PNAS 109, 15289-15294
   Abstract »    Full Text »    PDF »
Sequential interaction of chloride and proton ions with the fast gate steer the voltage-dependent gating in ClC-2 chloride channels.
J. E. Sanchez-Rodriguez, J. A. De Santiago-Castillo, J. A. Contreras-Vite, P. G. Nieto-Delgado, A. Castro-Chong, and J. Arreola (2012)
J. Physiol. 590, 4239-4253
   Abstract »    Full Text »    PDF »
Hearing Aid for Vertebrates via Multiple Episodic Adaptive Events on Prestin Genes.
Z. Liu, G.-H. Li, J.-F. Huang, R. W. Murphy, and P. Shi (2012)
Mol. Biol. Evol. 29, 2187-2198
   Abstract »    Full Text »    PDF »
Single myotonia mutation strikes multiple mechanisms of a chloride channel.
T.-Y. Chen (2012)
J. Physiol. 590, 3407
   Full Text »    PDF »
Disease-causing mutations C277R and C277Y modify gating of human ClC-1 chloride channels in myotonia congenita.
S. Weinberger, D. Wojciechowski, D. Sternberg, F. Lehmann-Horn, K. Jurkat-Rott, T. Becher, B. Begemann, C. Fahlke, and M. Fischer (2012)
J. Physiol. 590, 3449-3464
   Abstract »    Full Text »    PDF »
The Arabidopsis central vacuole as an expression system for intracellular transporters: functional characterization of the Cl-/H+ exchanger CLC-7.
A. Costa, P. V. K. Gutla, A. Boccaccio, J. Scholz-Starke, M. Festa, B. Basso, I. Zanardi, M. Pusch, F. L. Schiavo, F. Gambale, et al. (2012)
J. Physiol. 590, 3421-3430
   Abstract »    Full Text »    PDF »
Molecular mechanism of proton transport in CLC Cl-/H+ exchange transporters.
L. Feng, E. B. Campbell, and R. MacKinnon (2012)
PNAS 109, 11699-11704
   Abstract »    Full Text »    PDF »
Glutamate 268 Regulates Transport Probability of the Anion/Proton Exchanger ClC-5.
M. Grieschat and A. K. Alekov (2012)
J. Biol. Chem. 287, 8101-8109
   Abstract »    Full Text »    PDF »
Extracellular Determinants of Anion Discrimination of the Cl-/H+ Antiporter Protein CLC-5.
S. De Stefano, M. Pusch, and G. Zifarelli (2011)
J. Biol. Chem. 286, 44134-44144
   Abstract »    Full Text »    PDF »
Structural basis for the channel function of a degraded ABC transporter, CFTR (ABCC7).
Y. Bai, M. Li, and T.-C. Hwang (2011)
J. Gen. Physiol. 138, 495-507
   Abstract »    Full Text »    PDF »
A synthetic prestin reveals protein domains and molecular operation of outer hair cell piezoelectricity.
T. J. Schaechinger, D. Gorbunov, C. R. Halaszovich, T. Moser, S. Kugler, B. Fakler, and D. Oliver (2011)
EMBO J. 30, 2793-2804
   Abstract »    Full Text »    PDF »
ClC-7 is a slowly voltage-gated 2Cl-/1H+-exchanger and requires Ostm1 for transport activity.
L. Leisle, C. F. Ludwig, F. A. Wagner, T. J. Jentsch, and T. Stauber (2011)
EMBO J. 30, 2140-2152
   Abstract »    Full Text »    PDF »
Determinants of coupled transport and uncoupled current by the electrogenic SLC26 transporters.
E. Ohana, N. Shcheynikov, D. Yang, I. So, and S. Muallem (2011)
J. Gen. Physiol. 137, 239-251
   Abstract »    Full Text »    PDF »
Charge Transport in the ClC-type Chloride-Proton Anti-porter from Escherichia coli.
G. Kieseritzky and E.-W. Knapp (2011)
J. Biol. Chem. 286, 2976-2986
   Abstract »    Full Text »    PDF »
The Tao of Chloride Transporter Structure.
J. A. Mindell (2010)
Science 330, 601-602
   Abstract »    Full Text »    PDF »
Structure of a Eukaryotic CLC Transporter Defines an Intermediate State in the Transport Cycle.
L. Feng, E. B. Campbell, Y. Hsiung, and R. MacKinnon (2010)
Science 330, 635-641
   Abstract »    Full Text »    PDF »
Voltage-dependent charge movement associated with activation of the CLC-5 2Cl-/1H+ exchanger.
A. J. Smith and J. D. Lippiat (2010)
FASEB J 24, 3696-3705
   Abstract »    Full Text »    PDF »
A regulatory calcium-binding site at the subunit interface of CLC-K kidney chloride channels.
A. Gradogna, E. Babini, A. Picollo, and M. Pusch (2010)
J. Gen. Physiol. 136, 311-323
   Abstract »    Full Text »    PDF »
Permeant anions contribute to voltage dependence of ClC-2 chloride channel by interacting with the protopore gate.
J. E. S nchez-Rodr guez, J. A. De Santiago-Castillo, and J. Arreola (2010)
J. Physiol. 588, 2545-2556
   Abstract »    Full Text »    PDF »
Paul F. Cranefield Award to Merritt C. Maduke.
J. Gen. Physiol. 136, 1-2
   Full Text »    PDF »
Endosomal Chloride-Proton Exchange Rather Than Chloride Conductance Is Crucial for Renal Endocytosis.
G. Novarino, S. Weinert, G. Rickheit, and T. J. Jentsch (2010)
Science 328, 1398-1401
   Abstract »    Full Text »    PDF »
Proton block of the CLC-5 Cl-/H+ exchanger.
A. Picollo, M. Malvezzi, and A. Accardi (2010)
J. Gen. Physiol. 135, 653-659
   Abstract »    Full Text »    PDF »
The ClC-3 Cl-/H+ Antiporter Becomes Uncoupled at Low Extracellular pH.
J. J. Matsuda, M. S. Filali, M. M. Collins, K. A. Volk, and F. S. Lamb (2010)
J. Biol. Chem. 285, 2569-2579
   Abstract »    Full Text »    PDF »
Substrate-driven conformational changes in ClC-ec1 observed by fluorine NMR.
S. M. Elvington, C. W. Liu, and M. C. Maduke (2009)
EMBO J. 28, 3090-3102
   Abstract »    Full Text »    PDF »
Isolation and Characterization of a High Affinity Peptide Inhibitor of ClC-2 Chloride Channels.
C. H. Thompson, P. R. Olivetti, M. D. Fuller, C. S. Freeman, D. McMaster, R. J. French, J. Pohl, J. Kubanek, and N. A. McCarty (2009)
J. Biol. Chem. 284, 26051-26062
   Abstract »    Full Text »    PDF »
Two Snapshots of Electron Transport across the Membrane: INSIGHTS INTO THE STRUCTURE AND FUNCTION OF DsbD.
S.-H. Cho and J. Beckwith (2009)
J. Biol. Chem. 284, 11416-11424
   Abstract »    Full Text »    PDF »
Residues Important for Nitrate/Proton Coupling in Plant and Mammalian CLC Transporters.
E.-Y. Bergsdorf, A. A. Zdebik, and T. J. Jentsch (2009)
J. Biol. Chem. 284, 11184-11193
   Abstract »    Full Text »    PDF »
Voltage-dependent and -independent titration of specific residues accounts for complex gating of a ClC chloride channel by extracellular protons.
M. I. Niemeyer, L. P. Cid, Y. R. Yusef, R. Briones, and F. V. Sepulveda (2009)
J. Physiol. 587, 1387-1400
   Abstract »    Full Text »    PDF »
Conversion of the 2 Cl-/1 H+ antiporter ClC-5 in a NO3-/H+ antiporter by a single point mutation.
G. Zifarelli and M. Pusch (2009)
EMBO J. 28, 175-182
   Abstract »    Full Text »    PDF »
Intracellular Proton-Transfer Mutants in a CLC Cl-/H+ Exchanger.
H.-H. Lim and C. Miller (2009)
J. Gen. Physiol. 133, 131-138
   Abstract »    Full Text »    PDF »
Characterization of Dent's disease mutations of CLC-5 reveals a correlation between functional and cell biological consequences and protein structure.
A. J. Smith, A. A. C. Reed, N. Y. Loh, R. V. Thakker, and J. D. Lippiat (2009)
Am J Physiol Renal Physiol 296, F390-F397
   Abstract »    Full Text »    PDF »
A provisional transport mechanism for a chloride channel-type Cl-/H+ exchanger.
C. Miller and W. Nguitragool (2009)
Phil Trans R Soc B 364, 175-180
   Abstract »    Full Text »    PDF »
Proton-coupled gating in chloride channels.
J. Lisal and M. Maduke (2009)
Phil Trans R Soc B 364, 181-187
   Abstract »    Full Text »    PDF »
Blocking Pore-open Mutants of CLC-0 by Amphiphilic Blockers.
X.-D. Zhang, P.-Y. Tseng, W.-P. Yu, and T.-Y. Chen (2008)
J. Gen. Physiol. 133, 43-58
   Abstract »    Full Text »    PDF »
Amphiphilic Blockers Punch through a Mutant CLC-0 Pore.
X.-D. Zhang and T.-Y. Chen (2008)
J. Gen. Physiol. 133, 59-68
   Abstract »    Full Text »    PDF »
Identification of Regulatory Phosphorylation Sites in a Cell Volume- and Ste20 Kinase-dependent ClC Anion Channel.
R. A. Falin, R. Morrison, A.-J. L. Ham, and K. Strange (2008)
J. Gen. Physiol. 133, 29-42
   Abstract »    Full Text »    PDF »
Gating and trafficking of ClC-2 chloride channel without cystathionine {beta}-synthase domains.
J. Arreola, J. A. De Santiago-Castillo, J. E. Sanchez, and P. G. Nieto (2008)
J. Physiol. 586, 5289
   Full Text »    PDF »
Gating of human ClC-2 chloride channels and regulation by carboxy-terminal domains.
J. Garcia-Olivares, A. Alekov, M. R. Boroumand, B. Begemann, P. Hidalgo, and C. Fahlke (2008)
J. Physiol. 586, 5325-5336
   Abstract »    Full Text »    PDF »
Ion Channels in Microbes.
B. Martinac, Y. Saimi, and C. Kung (2008)
Physiol Rev 88, 1449-1490
   Abstract »    Full Text »    PDF »
Ion permeation through a Cl--selective channel designed from a CLC Cl-/H+ exchanger.
H. Jayaram, A. Accardi, F. Wu, C. Williams, and C. Miller (2008)
PNAS 105, 11194-11199
   Abstract »    Full Text »    PDF »
Intracellular Proton Regulation of ClC-0.
G. Zifarelli, A. R. Murgia, P. Soliani, and M. Pusch (2008)
J. Gen. Physiol. 132, 185-198
   Abstract »    Full Text »    PDF »
Molecular mechanism of pH sensing in KcsA potassium channels.
A. N. Thompson, D. J. Posson, P. V. Parsa, and C. M. Nimigean (2008)
PNAS 105, 6900-6905
   Abstract »    Full Text »    PDF »
The Solute Carrier 26 Family of Proteins in Epithelial Ion Transport.
M. R. Dorwart, N. Shcheynikov, D. Yang, and S. Muallem (2008)
Physiology 23, 104-114
   Abstract »    Full Text »    PDF »
CLC-0 and CFTR: Chloride Channels Evolved From Transporters.
T.-Y. Chen and T.-C. Hwang (2008)
Physiol Rev 88, 351-387
   Abstract »    Full Text »    PDF »
Molecular Physiology of Bestrophins: Multifunctional Membrane Proteins Linked to Best Disease and Other Retinopathies.
H. C. Hartzell, Z. Qu, K. Yu, Q. Xiao, and L.-T. Chien (2008)
Physiol Rev 88, 639-672
   Abstract »    Full Text »    PDF »
Chloride Homeostasis in Saccharomyces cerevisiae: High Affinity Influx, V-ATPase-dependent Sequestration, and Identification of a Candidate Cl- Sensor.
M. L. Jennings and J. Cui (2008)
J. Gen. Physiol. 131, 379-391
   Abstract »    Full Text »    PDF »
Determinants of Anion-Proton Coupling in Mammalian Endosomal CLC Proteins.
A. A. Zdebik, G. Zifarelli, E.-Y. Bergsdorf, P. Soliani, O. Scheel, T. J. Jentsch, and M. Pusch (2008)
J. Biol. Chem. 283, 4219-4227
   Abstract »    Full Text »    PDF »
Overexpression of CLC-3 in HEK293T cells yields novel currents that are pH dependent.
J. J. Matsuda, M. S. Filali, K. A. Volk, M. M. Collins, J. G. Moreland, and F. S. Lamb (2008)
Am J Physiol Cell Physiol 294, C251-C262
   Abstract »    Full Text »    PDF »
CLC Cl-/H+ transporters constrained by covalent cross-linking.
W. Nguitragool and C. Miller (2007)
PNAS 104, 20659-20665
   Abstract »    Full Text »    PDF »
Genetic Dissection of the Divergent Activities of the Multifunctional Membrane Sensor BglF.
G. Monderer-Rothkoff and O. Amster-Choder (2007)
J. Bacteriol. 189, 8601-8615
   Abstract »    Full Text »    PDF »
Inhibition of Skeletal Muscle ClC-1 Chloride Channels by Low Intracellular pH and ATP.
B. Bennetts, M. W. Parker, and B. A. Cromer (2007)
J. Biol. Chem. 282, 32780-32791
   Abstract »    Full Text »    PDF »
The Mechanism of Fast-Gate Opening in ClC-0.
A. M. Engh, J. D. Faraldo-Gomez, and M. Maduke (2007)
J. Gen. Physiol. 130, 335-349
   Abstract »    Full Text »    PDF »
The Role of a Conserved Lysine in Chloride- and Voltage-dependent ClC-0 Fast Gating.
A. M. Engh, J. D. Faraldo-Gomez, and M. Maduke (2007)
J. Gen. Physiol. 130, 351-363
   Abstract »    Full Text »    PDF »
Inositol Trisphosphate Receptor Ca2+ Release Channels.
J. K. Foskett, C. White, K.-H. Cheung, and D.-O. D. Mak (2007)
Physiol Rev 87, 593-658
   Abstract »    Full Text »    PDF »
Uncoupling and Turnover in a Cl-/H+ Exchange Transporter.
M. Walden, A. Accardi, F. Wu, C. Xu, C. Williams, and C. Miller (2007)
J. Gen. Physiol. 129, 317-329
   Abstract »    Full Text »    PDF »
A Bacterial Arginine-Agmatine Exchange Transporter Involved in Extreme Acid Resistance.
Y. Fang, L. Kolmakova-Partensky, and C. Miller (2007)
J. Biol. Chem. 282, 176-182
   Abstract »    Full Text »    PDF »
The Amt/MEP/Rh Family: Structure of AmtB and the Mechanism of Ammonia Gas Conduction..
S. Khademi and R. M. Stroud (2006)
Physiology 21, 419-429
   Abstract »    Full Text »    PDF »
RNA editing in Drosophila melanogaster: New targets and functional consequences.
M. Stapleton, J. W. Carlson, and S. E. Celniker (2006)
RNA 12, 1922-1932
   Abstract »    Full Text »    PDF »
Recent advances in understanding the clinical and genetic heterogeneity of Dent's disease.
M. Ludwig, B. Utsch, and L. A. H. Monnens (2006)
Nephrol. Dial. Transplant. 21, 2708-2717
   Full Text »    PDF »
A structural basis for Mg2+ homeostasis and the CorA translocation cycle.
J. Payandeh and E. F. Pai (2006)
EMBO J. 25, 3762-3773
   Abstract »    Full Text »    PDF »
Barttin modulates trafficking and function of ClC-K channels.
U. Scholl, S. Hebeisen, A. G. H. Janssen, G. Muller-Newen, A. Alekov, and C. Fahlke (2006)
PNAS 103, 11411-11416
   Abstract »    Full Text »    PDF »
Escherichia coli acid resistance: pH-sensing, activation by chloride and autoinhibition in GadB.
H. Gut, E. Pennacchietti, R. A. John, F. Bossa, G. Capitani, D. De Biase, and M. G. Grutter (2006)
EMBO J. 25, 2643-2651
   Abstract »    Full Text »    PDF »
Statistical Limits to the Identification of Ion Channel Domains by Sequence Similarity.
A. A. Fodor and R. W. Aldrich (2006)
J. Gen. Physiol. 127, 755-766
   Abstract »    Full Text »    PDF »
Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
Y. R. Yusef, L. Zuniga, M. Catalan, M. I. Niemeyer, L. P. Cid, and F. V. Sepulveda (2006)
J. Physiol. 572, 173-181
   Abstract »    Full Text »    PDF »
Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the Caenorhabditis elegans oocyte.
J. Denton, K. Nehrke, X. Yin, A. M. Beld, and K. Strange (2006)
Am J Physiol Cell Physiol 290, C1109-C1118
   Abstract »    Full Text »    PDF »
Crystallographic Evidence That the Dinuclear Copper Center of Tyrosinase Is Flexible during Catalysis.
Y. Matoba, T. Kumagai, A. Yamamoto, H. Yoshitsu, and M. Sugiyama (2006)
J. Biol. Chem. 281, 8981-8990
   Abstract »    Full Text »    PDF »
Roles of K149, G352, and H401 in the Channel Functions of ClC-0: Testing the Predictions from Theoretical Calculations.
X.-D. Zhang, Y. Li, W.-P. Yu, and T.-Y. Chen (2006)
J. Gen. Physiol. 127, 435-447
   Abstract »    Full Text »    PDF »
Ion-binding properties of the ClC chloride selectivity filter.
S. Lobet and R. Dutzler (2006)
EMBO J. 25, 24-33
   Abstract »    Full Text »    PDF »
Association between Hsp90 and the ClC-2 chloride channel upregulates channel function.
A. Hinzpeter, J. Lipecka, F. Brouillard, M. Baudoin-Legros, M. Dadlez, A. Edelman, and J. Fritsch (2006)
Am J Physiol Cell Physiol 290, C45-C56
   Abstract »    Full Text »    PDF »
Mechanism of chloride permeation in the cystic fibrosis transmembrane conductance regulator chloride channel.
P. Linsdell (2006)
Exp Physiol 91, 123-129
   Abstract »    Full Text »    PDF »
Proton Sensing of CLC-0 Mutant E166D.
S. Traverso, G. Zifarelli, R. Aiello, and M. Pusch (2005)
J. Gen. Physiol. 127, 51-66
   Abstract »    Full Text »    PDF »
Principles of Selective Ion Transport in Channels and Pumps.
E. Gouaux and R. MacKinnon (2005)
Science 310, 1461-1465
   Abstract »    Full Text »    PDF »
Quantitative Analysis of the Voltage-dependent Gating of Mouse Parotid ClC-2 Chloride Channel.
J. A. de Santiago, K. Nehrke, and J. Arreola (2005)
J. Gen. Physiol. 126, 591-603
   Abstract »    Full Text »    PDF »
Separate Ion Pathways in a Cl-/H+ Exchanger.
A. Accardi, M. Walden, W. Nguitragool, H. Jayaram, C. Williams, and C. Miller (2005)
J. Gen. Physiol. 126, 563-570
   Abstract »    Full Text »    PDF »
Zinc inhibits human ClC-1 muscle chloride channel by interacting with its common gating mechanism.
M. D Duffield, G. Y Rychkov, A. H Bretag, and M. L Roberts (2005)
J. Physiol. 568, 5-12
   Abstract »    Full Text »    PDF »
Basolateral localization of native ClC-2 chloride channels in absorptive intestinal epithelial cells and basolateral sorting encoded by a CBS-2 domain di-leucine motif.
G. Pena-Munzenmayer, M. Catalan, I. Cornejo, C. D. Figueroa, J. E. Melvin, M. I. Niemeyer, L. P. Cid, and F. V. Sepulveda (2005)
J. Cell Sci. 118, 4243-4252
   Abstract »    Full Text »    PDF »
Functional Characterization of Novel Alternatively Spliced ClC-2 Chloride Channel Variants in the Heart.
F. C. Britton, G.-L. Wang, Z. M. Huang, L. Ye, B. Horowitz, J. R. Hume, and D. Duan (2005)
J. Biol. Chem. 280, 25871-25880
   Abstract »    Full Text »    PDF »
Chloride Transport in the Kidney: Lessons from Human Disease and Knockout Mice.
T. J. Jentsch (2005)
J. Am. Soc. Nephrol. 16, 1549-1561
   Abstract »    Full Text »    PDF »
Cysteine Accessibility in ClC-0 Supports Conservation of the ClC Intracellular Vestibule.
A. M. Engh and M. Maduke (2005)
J. Gen. Physiol. 125, 601-617
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882