Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 300 (5618): 492-495

Copyright © 2003 by the American Association for the Advancement of Science

Regulation of Elongating RNA Polymerase II by Forkhead Transcription Factors in Yeast

Antonin Morillon,1 Justin O'Sullivan,2 Abul Azad,2 Nicholas Proudfoot,2 Jane Mellor1*

Abstract: The elongation phase of transcription by RNA polymerase II (RNAPII) is highly regulated and tightly linked to pre–messenger RNA (pre-mRNA) processing. Recent studies have implicated an early elongation checkpoint that facilitates the link to pre-mRNA processing. Here we show that the yeast forkhead transcription factors, Fkh1p and Fkh2p, associate with the coding regions of active genes and influence, in opposing ways, transcriptional elongation and termination. These events are coordinated with serine-5 and -2 phosphorylation of the heptad repeat of the carboxy-terminal domain (CTD) of RNAPII. Our results suggest that, in addition to their documented promoter function, Fkh1p and Fkh2p coordinate early transcription elongation and pre-mRNA processing. This may reflect a general feature of gene regulation in eukaryotes.

1 Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
2 Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford OX1 3RE, UK.

* To whom correspondence should be addressed. E-mail: emellor{at}

Genome-wide dFOXO targets and topology of the transcriptomic response to stress and insulin signalling.
N. Alic, T. D. Andrews, M. E. Giannakou, I. Papatheodorou, C. Slack, M. P. Hoddinott, H. M. Cocheme, E. F. Schuster, J. M. Thornton, and L. Partridge (2014)
Mol Syst Biol 7, 502
   Abstract »    Full Text »    PDF »
Identifying the genetic determinants of transcription factor activity.
E. Lee and H. J. Bussemaker (2014)
Mol Syst Biol 6, 412
   Abstract »    Full Text »    PDF »
Genome-wide analysis of FOXO3 mediated transcription regulation through RNA polymerase II profiling.
A. Eijkelenboom, M. Mokry, E. de Wit, L. M. Smits, P. E. Polderman, M. H. van Triest, R. van Boxtel, A. Schulze, W. de Laat, E. Cuppen, et al. (2014)
Mol Syst Biol 9, 638
   Abstract »    Full Text »    PDF »
Deconvolution of Chromatin Immunoprecipitation-Microarray (ChIP-chip) Analysis of MBF Occupancies Reveals the Temporal Recruitment of Rep2 at the MBF Target Genes.
M. Eshaghi, L. Zhu, Z. Chu, J. Li, C. S. Chan, A. Shahab, R. K. M. Karuturi, and J. Liu (2011)
Eukaryot. Cell 10, 130-141
   Abstract »    Full Text »    PDF »
Comprehensive reanalysis of transcription factor knockout expression data in Saccharomyces cerevisiae reveals many new targets.
J. Reimand, J. M. Vaquerizas, A. E. Todd, J. Vilo, and N. M. Luscombe (2010)
Nucleic Acids Res. 38, 4768-4777
   Abstract »    Full Text »    PDF »
An Rtt109-Independent Role for Vps75 in Transcription-Associated Nucleosome Dynamics.
L. A. Selth, Y. Lorch, M. T. Ocampo-Hafalla, R. Mitter, M. Shales, N. J. Krogan, R. D. Kornberg, and J. Q. Svejstrup (2009)
Mol. Cell. Biol. 29, 4220-4234
   Abstract »    Full Text »    PDF »
Polyadenylation releases mRNA from RNA polymerase II in a process that is licensed by splicing.
F. Rigo and H. G. Martinson (2009)
RNA 15, 823-836
   Abstract »    Full Text »    PDF »
14-3-3 Interaction with Histone H3 Involves a Dual Modification Pattern of Phosphoacetylation.
W. Walter, D. Clynes, Y. Tang, R. Marmorstein, J. Mellor, and S. L. Berger (2008)
Mol. Cell. Biol. 28, 2840-2849
   Abstract »    Full Text »    PDF »
Forkhead proteins control the outcome of transcription factor binding by antiactivation.
W. P. Voth, Y. Yu, S. Takahata, K. L. Kretschmann, J. D. Lieb, R. L. Parker, B. Milash, and D. J. Stillman (2007)
EMBO J. 26, 4324-4334
   Abstract »    Full Text »    PDF »
The Isw2 Chromatin-Remodeling ATPase Cooperates with the Fkh2 Transcription Factor To Repress Transcription of the B-Type Cyclin Gene CLB2.
J. A. Sherriff, N. A. Kent, and J. Mellor (2007)
Mol. Cell. Biol. 27, 2848-2860
   Abstract »    Full Text »    PDF »
The Rate of c-fos Transcription in Vivo Is Continuously Regulated at the Level of Elongation by Dynamic Stimulus-coupled Recruitment of Positive Transcription Elongation Factor b.
S. Ryser, T. Fujita, S. Tortola, I. Piuz, and W. Schlegel (2007)
J. Biol. Chem. 282, 5075-5084
   Abstract »    Full Text »    PDF »
The role of protein arginine methylation in the formation of silent chromatin.
M. C. Yu, D. W. Lamming, J. A. Eskin, D. A. Sinclair, and P. A. Silver (2006)
Genes & Dev. 20, 3249-3254
   Abstract »    Full Text »    PDF »
Identification and Characterization of Elf1, a Conserved Transcription Elongation Factor in Saccharomyces cerevisiae.
D. Prather, N. J. Krogan, A. Emili, J. F. Greenblatt, and F. Winston (2005)
Mol. Cell. Biol. 25, 10122-10135
   Abstract »    Full Text »    PDF »
From The Cover: MLL associates specifically with a subset of transcriptionally active target genes.
T. A. Milne, Y. Dou, M. E. Martin, H. W. Brock, R. G. Roeder, and J. L. Hess (2005)
PNAS 102, 14765-14770
   Abstract »    Full Text »    PDF »
Yeast Recombination Enhancer Is Stimulated by Transcription Activation.
S. Ercan, J. C. Reese, J. L. Workman, and R. T. Simpson (2005)
Mol. Cell. Biol. 25, 7976-7987
   Abstract »    Full Text »    PDF »
Evidence That Phosphorylation of the RNA Polymerase II Carboxyl-terminal Repeats Is Similar in Yeast and Humans.
D. P. Morris, G. A. Michelotti, and D. A. Schwinn (2005)
J. Biol. Chem. 280, 31368-31377
   Abstract »    Full Text »    PDF »
The yeast lipin Smp2 couples phospholipid biosynthesis to nuclear membrane growth.
H. Santos-Rosa, J. Leung, N. Grimsey, S. Peak-Chew, and S. Siniossoglou (2005)
EMBO J. 24, 1931-1941
   Abstract »    Full Text »    PDF »
Impairment of the TFIIH-associated CDK-activating Kinase Selectively Affects Cell Cycle-regulated Gene Expression in Fission Yeast.
K. M. Lee, I. Miklos, H. Du, S. Watt, Z. Szilagyi, J. E. Saiz, R. Madabhushi, C. J. Penkett, M. Sipiczki, J. Bahler, et al. (2005)
Mol. Biol. Cell 16, 2734-2745
   Abstract »    Full Text »    PDF »
A Novel Domain in Set2 Mediates RNA Polymerase II Interaction and Couples Histone H3 K36 Methylation with Transcript Elongation.
K. O. Kizer, H. P. Phatnani, Y. Shibata, H. Hall, A. L. Greenleaf, and B. D. Strahl (2005)
Mol. Cell. Biol. 25, 3305-3316
   Abstract »    Full Text »    PDF »
Methylation of H3 Lysine 4 at Euchromatin Promotes Sir3p Association with Heterochromatin.
H. Santos-Rosa, A. J. Bannister, P. M. Dehe, V. Geli, and T. Kouzarides (2004)
J. Biol. Chem. 279, 47506-47512
   Abstract »    Full Text »    PDF »
Empirical Analysis of Transcriptional Activity in the Arabidopsis Genome.
K. Yamada, J. Lim, J. M. Dale, H. Chen, P. Shinn, C. J. Palm, A. M. Southwick, H. C. Wu, C. Kim, M. Nguyen, et al. (2003)
Science 302, 842-846
   Abstract »    Full Text »    PDF »
The Tat/TAR-dependent phosphorylation of RNA polymerase II C-terminal domain stimulates cotranscriptional capping of HIV-1 mRNA.
M. Zhou, L. Deng, F. Kashanchi, J. N. Brady, A. J. Shatkin, and A. Kumar (2003)
PNAS 100, 12666-12671
   Abstract »    Full Text »    PDF »
Interrogating Androgen Receptor Function in Recurrent Prostate Cancer.
L. Zhang, M. Johnson, K. H. Le, M. Sato, R. Ilagan, M. Iyer, S. S. Gambhir, L. Wu, and M. Carey (2003)
Cancer Res. 63, 4552-4560
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882