Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 300 (5619): 653-656

Copyright © 2003 by the American Association for the Advancement of Science

Reversing the Inactivation of Peroxiredoxins Caused by Cysteine Sulfinic Acid Formation

Hyun Ae Woo,1* Ho Zoon Chae,2*{dagger} Sung Chul Hwang,2{ddagger} Kap-Seok Yang,1 Sang Won Kang,1 Kanghwa Kim ,2§ Sue Goo Rhee2||

Abstract: The active-site cysteine of peroxiredoxins is selectively oxidized to cysteine sulfinic acid during catalysis, which leads to inactivation of peroxidase activity. This oxidation was thought to be irreversible. However, by metabolic labeling of mammalian cells with 35S, we show that the sulfinic form of peroxiredoxin I, produced during the exposure of cells to H2O2, is rapidly reduced to the catalytically active thiol form. The mammalian cells' ability to reduce protein sulfinic acid might serve as a mechanism to repair oxidatively damaged proteins or represent a new type of cyclic modification by which the function of various proteins is regulated.

1 Center for Cell Signaling Research and Division of Molecular Life Sciences, Ewha Womans University, Seoul 120-750, Korea.
2 Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.

Back to Top

{dagger} Present address: Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Kwangju 500-757, Korea.

{ddagger} Present address: Department of Pulmonary and Critical Care Medicine, Ajou University School of Medicine, Suwon 442-749, Korea.

§ Present address: Department of Food and Nutrition, College of Home Economics, Chonnam National University, Kwangju 500-757, Korea.

* These authors contributed equally to this work.

|| To whom correspondence should be addressed. E-mail: sgrhee{at}nih.gov


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Molecular Basis for the Resistance of Human Mitochondrial 2-Cys Peroxiredoxin 3 to Hyperoxidation.
A. C. Haynes, J. Qian, J. A. Reisz, C. M. Furdui, and W. T. Lowther (2013)
J. Biol. Chem. 288, 29714-29723
   Abstract »    Full Text »    PDF »
Hyperoxidation of Peroxiredoxins 2 and 3: RATE CONSTANTS FOR THE REACTIONS OF THE SULFENIC ACID OF THE PEROXIDATIC CYSTEINE.
A. V. Peskin, N. Dickerhof, R. A. Poynton, L. N. Paton, P. E. Pace, M. B. Hampton, and C. C. Winterbourn (2013)
J. Biol. Chem. 288, 14170-14177
   Abstract »    Full Text »    PDF »
Thiol Peroxidase Is an Important Component of Streptococcus pneumoniae in Oxygenated Environments.
B. Hajaj, H. Yesilkaya, R. Benisty, M. David, P. W. Andrew, and N. Porat (2012)
Infect. Immun. 80, 4333-4343
   Abstract »    Full Text »    PDF »
Protective Effect of Carnosic Acid, a Pro-Electrophilic Compound, in Models of Oxidative Stress and Light-Induced Retinal Degeneration.
T. Rezaie, S. R. McKercher, K. Kosaka, M. Seki, L. Wheeler, V. Viswanath, T. Chun, R. Joshi, M. Valencia, S. Sasaki, et al. (2012)
Invest. Ophthalmol. Vis. Sci. 53, 7847-7854
   Abstract »    Full Text »    PDF »
Chasing Cysteine Oxidative Modifications: Proteomic Tools for Characterizing Cysteine Redox Status.
C. I. Murray and J. E. Van Eyk (2012)
Circ Cardiovasc Genet 5, 591
   Full Text »    PDF »
A Novel Strategy for Global Analysis of the Dynamic Thiol Redox Proteome.
P. Martinez-Acedo, E. Nunez, F. J. S. Gomez, M. Moreno, E. Ramos, A. Izquierdo-Alvarez, E. Miro-Casas, R. Mesa, P. Rodriguez, A. Martinez-Ruiz, et al. (2012)
Mol. Cell. Proteomics 11, 800-813
   Abstract »    Full Text »    PDF »
Regulatory Control or Oxidative Damage? Proteomic Approaches to Interrogate the Role of Cysteine Oxidation Status in Biological Processes.
J. M. Held and B. W. Gibson (2012)
Mol. Cell. Proteomics 11, R111.013037
   Abstract »    Full Text »    PDF »
Sulfiredoxin Protein Is Critical for Redox Balance and Survival of Cells Exposed to Low Steady-state Levels of H2O2.
J. Y. Baek, S. H. Han, S. H. Sung, H. E. Lee, Y.-m. Kim, Y. H. Noh, S. H. Bae, S. G. Rhee, and T.-S. Chang (2012)
J. Biol. Chem. 287, 81-89
   Abstract »    Full Text »    PDF »
Identification and Characterization of Alternatively Transcribed Form of Peroxiredoxin IV Gene That Is Specifically Expressed in Spermatids of Postpubertal Mouse Testis.
S. H. Yim, Y.-J. Kim, S. Y. Oh, J. Fujii, Y. Zhang, V. N. Gladyshev, and S. G. Rhee (2011)
J. Biol. Chem. 286, 39002-39012
   Abstract »    Full Text »    PDF »
Peroxiredoxin 2 Inhibits Granulosa Cell Apoptosis During Follicle Atresia Through the NFKB Pathway in Mice.
S. Yang, A. Luo, X. Hao, Z. Lai, T. Ding, X. Ma, M. Mayinuer, W. Shen, X. Wang, Y. Lu, et al. (2011)
Biol Reprod 84, 1182-1189
   Abstract »    Full Text »    PDF »
Different consequences of reactions with hydrogen peroxide and t-butyl hydroperoxide in the hyperoxidative inactivation of rat peroxiredoxin-4.
Y. Ikeda, M. Nakano, H. Ihara, R. Ito, N. Taniguchi, and J. Fujii (2011)
J. Biochem. 149, 443-453
   Abstract »    Full Text »    PDF »
The Dual-Targeted Plant Sulfiredoxin Retroreduces the Sulfinic Form of Atypical Mitochondrial Peroxiredoxin.
I. Iglesias-Baena, S. Barranco-Medina, F. Sevilla, and J.-J. Lazaro (2011)
Plant Physiology 155, 944-955
   Abstract »    Full Text »    PDF »
Investigation of Peroxiredoxin IV as a Calpain-regulated Pathway in Cancer.
H. ROUMES, A. PIRES-ALVES, L. GONTHIER-MAURIN, E. DARGELOS, and P. COTTIN (2010)
Anticancer Res 30, 5085-5089
   Abstract »    Full Text »    PDF »
Overoxidation of 2-Cys Peroxiredoxin in Prokaryotes: CYANOBACTERIAL 2-CYS PEROXIREDOXINS SENSITIVE TO OXIDATIVE STRESS.
M. B. Pascual, A. Mata-Cabana, F. J. Florencio, M. Lindahl, and F. J. Cejudo (2010)
J. Biol. Chem. 285, 34485-34492
   Abstract »    Full Text »    PDF »
Redox Regulation of Lipopolysaccharide-mediated Sulfiredoxin Induction, Which Depends on Both AP-1 and Nrf2.
H. Kim, Y. Jung, B. S. Shin, H. Kim, H. Song, S. H. Bae, S. G. Rhee, and W. Jeong (2010)
J. Biol. Chem. 285, 34419-34428
   Abstract »    Full Text »    PDF »
T-LAK Cell-originated Protein Kinase (TOPK) Phosphorylation of Prx1 at Ser-32 Prevents UVB-induced Apoptosis in RPMI7951 Melanoma Cells through the Regulation of Prx1 Peroxidase Activity.
T. A. Zykova, F. Zhu, T. I. Vakorina, J. Zhang, L. A. Higgins, D. V. Urusova, A. M. Bode, and Z. Dong (2010)
J. Biol. Chem. 285, 29138-29146
   Abstract »    Full Text »    PDF »
Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling.
E. W. Miller, B. C. Dickinson, and C. J. Chang (2010)
PNAS 107, 15681-15686
   Abstract »    Full Text »    PDF »
Postischemic Deactivation of Cardiac Aldose Reductase: ROLE OF GLUTATHIONE S-TRANSFERASE P AND GLUTAREDOXIN IN REGENERATION OF REDUCED THIOLS FROM SULFENIC ACIDS.
K. Wetzelberger, S. P. Baba, M. Thirunavukkarasu, Y.-S. Ho, N. Maulik, O. A. Barski, D. J. Conklin, and A. Bhatnagar (2010)
J. Biol. Chem. 285, 26135-26148
   Abstract »    Full Text »    PDF »
Peroxiredoxin IV protects cells from oxidative stress by removing H2O2 produced during disulphide formation.
T. J. Tavender and N. J. Bulleid (2010)
J. Cell Sci. 123, 2672-2679
   Abstract »    Full Text »    PDF »
The CCAAT-binding complex coordinates the oxidative stress response in eukaryotes.
M. Thon, Q. Al Abdallah, P. Hortschansky, D. H. Scharf, M. Eisendle, H. Haas, and A. A. Brakhage (2010)
Nucleic Acids Res. 38, 1098-1113
   Abstract »    Full Text »    PDF »
Characterization of plant sulfiredoxin and role of sulphinic form of 2-Cys peroxiredoxin.
I. Iglesias-Baena, S. Barranco-Medina, A. Lazaro-Payo, F. J. Lopez-Jaramillo, F. Sevilla, and J.-J. Lazaro (2010)
J. Exp. Bot. 61, 1509-1521
   Abstract »    Full Text »    PDF »
Protein Engineering of the Quaternary Sulfiredoxin{middle dot}Peroxiredoxin Enzyme{middle dot}Substrate Complex Reveals the Molecular Basis for Cysteine Sulfinic Acid Phosphorylation.
T. J. Jonsson, L. C. Johnson, and W. T. Lowther (2009)
J. Biol. Chem. 284, 33305-33310
   Abstract »    Full Text »    PDF »
JNK/FOXO-mediated Neuronal Expression of Fly Homologue of Peroxiredoxin II Reduces Oxidative Stress and Extends Life Span.
K.-S. Lee, K. Iijima-Ando, K. Iijima, W.-J. Lee, J. H. Lee, K. Yu, and D.-S. Lee (2009)
J. Biol. Chem. 284, 29454-29461
   Abstract »    Full Text »    PDF »
Deglutathionylation of 2-Cys Peroxiredoxin Is Specifically Catalyzed by Sulfiredoxin.
J. W. Park, J. J. Mieyal, S. G. Rhee, and P. B. Chock (2009)
J. Biol. Chem. 284, 23364-23374
   Abstract »    Full Text »    PDF »
Novel Protective Mechanism against Irreversible Hyperoxidation of Peroxiredoxin: N{alpha}-TERMINAL ACETYLATION OF HUMAN PEROXIREDOXIN II.
J. H. Seo, J. C. Lim, D.-Y. Lee, K. S. Kim, G. Piszczek, H. W. Nam, Y. S. Kim, T. Ahn, C.-H. Yun, K. Kim, et al. (2009)
J. Biol. Chem. 284, 13455-13465
   Abstract »    Full Text »    PDF »
Sulfiredoxin Translocation into Mitochondria Plays a Crucial Role in Reducing Hyperoxidized Peroxiredoxin III.
Y. H. Noh, J. Y. Baek, W. Jeong, S. G. Rhee, and T.-S. Chang (2009)
J. Biol. Chem. 284, 8470-8477
   Abstract »    Full Text »    PDF »
NADPH Thioredoxin Reductase C Controls the Redox Status of Chloroplast 2-Cys Peroxiredoxins in Arabidopsis thaliana.
K. Kirchsteiger, P. Pulido, M. Gonzalez, and F. J. Cejudo (2009)
Mol Plant 2, 298-307
   Abstract »    Full Text »    PDF »
Superoxide Dismutase 1-mediated Production of Ethanol- and DNA-derived Radicals in Yeasts Challenged with Hydrogen Peroxide: MOLECULAR INSIGHTS INTO THE GENOME INSTABILITY OF PEROXIREDOXIN-NULL STRAINS.
R. Ogusucu, D. Rettori, L. E. S. Netto, and O. Augusto (2009)
J. Biol. Chem. 284, 5546-5556
   Abstract »    Full Text »    PDF »
H2O2-dependent Hyperoxidation of Peroxiredoxin 6 (Prdx6) Plays a Role in Cellular Toxicity via Up-regulation of iPLA2 Activity.
S. Y. Kim, H.-Y. Jo, M. H. Kim, Y.-y. Cha, S. W. Choi, J.-H. Shim, T. J. Kim, and K.-Y. Lee (2008)
J. Biol. Chem. 283, 33563-33568
   Abstract »    Full Text »    PDF »
Reduction of Cysteine Sulfinic Acid in Peroxiredoxin by Sulfiredoxin Proceeds Directly through a Sulfinic Phosphoryl Ester Intermediate.
T. J. Jonsson, M. S. Murray, L. C. Johnson, and W. T. Lowther (2008)
J. Biol. Chem. 283, 23846-23851
   Abstract »    Full Text »    PDF »
Oxidative Modification of Peroxiredoxin Is Associated with Drug-induced Apoptotic Signaling in Experimental Models of Parkinson Disease.
Y. M. Lee, S. H. Park, D.-I. Shin, J.-Y. Hwang, B. Park, Y.-J. Park, T. H. Lee, H. Z. Chae, B. K. Jin, T. H. Oh, et al. (2008)
J. Biol. Chem. 283, 9986-9998
   Abstract »    Full Text »    PDF »
Oxidative Modification to Cysteine Sulfonic Acid of Cys111 in Human Copper-Zinc Superoxide Dismutase.
N. Fujiwara, M. Nakano, S. Kato, D. Yoshihara, T. Ookawara, H. Eguchi, N. Taniguchi, and K. Suzuki (2007)
J. Biol. Chem. 282, 35933-35944
   Abstract »    Full Text »    PDF »
S-nitrosylation of peroxiredoxin 2 promotes oxidative stress-induced neuronal cell death in Parkinson's disease.
J. Fang, T. Nakamura, D.-H. Cho, Z. Gu, and S. A. Lipton (2007)
PNAS 104, 18742-18747
   Abstract »    Full Text »    PDF »
Oxidation of 2-Cys-peroxiredoxins by Arachidonic Acid Peroxide Metabolites of Lipoxygenases and Cyclooxygenase-2.
P. Cordray, K. Doyle, K. Edes, P. J. Moos, and F. A. Fitzpatrick (2007)
J. Biol. Chem. 282, 32623-32629
   Abstract »    Full Text »    PDF »
Increase in Expression Levels and Resistance to Sulfhydryl Oxidation of Peroxiredoxin Isoforms in Amyloid beta-Resistant Nerve Cells.
R. C. Cumming, R. Dargusch, W. H. Fischer, and D. Schubert (2007)
J. Biol. Chem. 282, 30523-30534
   Abstract »    Full Text »    PDF »
Cysteine Redox Sensor in PKGIa Enables Oxidant-Induced Activation.
J. R. Burgoyne, M. Madhani, F. Cuello, R. L. Charles, J. P. Brennan, E. Schroder, D. D. Browning, and P. Eaton (2007)
Science 317, 1393-1397
   Abstract »    Full Text »    PDF »
Protein Sulfenation as a Redox Sensor: Proteomics Studies Using a Novel Biotinylated Dimedone Analogue.
R. L. Charles, E. Schroder, G. May, P. Free, P. R. J. Gaffney, R. Wait, S. Begum, R. J. Heads, and P. Eaton (2007)
Mol. Cell. Proteomics 6, 1473-1484
   Abstract »    Full Text »    PDF »
Signalling by NO-induced protein S-nitrosylation and S-glutathionylation: Convergences and divergences.
A. Martinez-Ruiz and S. Lamas (2007)
Cardiovasc Res 75, 220-228
   Abstract »    Full Text »    PDF »
Glutathione Is Recruited into the Nucleus in Early Phases of Cell Proliferation.
J. Markovic, C. Borras, A. Ortega, J. Sastre, J. Vina, and F. V. Pallardo (2007)
J. Biol. Chem. 282, 20416-20424
   Abstract »    Full Text »    PDF »
Role of p53 in antioxidant defense of HPV-positive cervical carcinoma cells following H2O2 exposure.
B. Ding, S. G. Chi, S. H. Kim, S. Kang, J. H. Cho, D. S. Kim, and N. H. Cho (2007)
J. Cell Sci. 120, 2284-2294
   Abstract »    Full Text »    PDF »
The Peroxiredoxin Tpx1 Is Essential as a H2O2 Scavenger during Aerobic Growth in Fission Yeast.
M. Jara, A. P. Vivancos, I. A. Calvo, A. Moldon, M. Sanso, and E. Hidalgo (2007)
Mol. Biol. Cell 18, 2288-2295
   Abstract »    Full Text »    PDF »
Defective mitochondrial peroxiredoxin-3 results in sensitivity to oxidative stress in Fanconi anemia.
S. S. Mukhopadhyay, K. S. Leung, M. J. Hicks, P. J. Hastings, H. Youssoufian, and S. E. Plon (2006)
J. Cell Biol. 175, 225-235
   Abstract »    Full Text »    PDF »
Molecular Mechanism of the Reduction of Cysteine Sulfinic Acid of Peroxiredoxin to Cysteine by Mammalian Sulfiredoxin.
W. Jeong, S. J. Park, T.-S. Chang, D.-Y. Lee, and S. G. Rhee (2006)
J. Biol. Chem. 281, 14400-14407
   Abstract »    Full Text »    PDF »
Decline of contractility during ischemia-reperfusion injury: actin glutathionylation and its effect on allosteric interaction with tropomyosin.
F. C. Chen and O. Ogut (2006)
Am J Physiol Cell Physiol 290, C719-C727
   Abstract »    Full Text »    PDF »
Regulation of heavy subunit chain of {gamma}-glutamylcysteine synthetase by tumor necrosis factor-{alpha} in lens epithelial cells: role of LEDGF/p75.
Y. Takamura, N. Fatma, E. Kubo, and D. P. Singh (2006)
Am J Physiol Cell Physiol 290, C554-C566
   Abstract »    Full Text »    PDF »
Single-Site Oxidation, Cysteine 108 to Cysteine Sulfinic Acid, in D-Amino Acid Oxidase from Trigonopsis variabilis and Its Structural and Functional Consequences.
A. Slavica, I. Dib, and B. Nidetzky (2005)
Appl. Envir. Microbiol. 71, 8061-8068
   Abstract »    Full Text »    PDF »
Oxidative Stress-dependent Structural and Functional Switching of a Human 2-Cys Peroxiredoxin Isotype II That Enhances HeLa Cell Resistance to H2O2-induced Cell Death.
J. C. Moon, Y.-S. Hah, W. Y. Kim, B. G. Jung, H. H. Jang, J. R. Lee, S. Y. Kim, Y. M. Lee, M. G. Jeon, C. W. Kim, et al. (2005)
J. Biol. Chem. 280, 28775-28784
   Abstract »    Full Text »    PDF »
A cysteine-sulfinic acid in peroxiredoxin regulates H2O2-sensing by the antioxidant Pap1 pathway.
A. P. Vivancos, E. A. Castillo, B. Biteau, C. Nicot, J. Ayte, M. B. Toledano, and E. Hidalgo (2005)
PNAS 102, 8875-8880
   Abstract »    Full Text »    PDF »
Oxidation of a Eukaryotic 2-Cys Peroxiredoxin Is a Molecular Switch Controlling the Transcriptional Response to Increasing Levels of Hydrogen Peroxide.
S. M. Bozonet, V. J. Findlay, A. M. Day, J. Cameron, E. A. Veal, and B. A. Morgan (2005)
J. Biol. Chem. 280, 23319-23327
   Abstract »    Full Text »    PDF »
Variable overoxidation of peroxiredoxins in human lung cells in severe oxidative stress.
S. T. Lehtonen, P. M. H. Markkanen, M. Peltoniemi, S. W. Kang, and V. L. Kinnula (2005)
Am J Physiol Lung Cell Mol Physiol 288, L997-L1001
   Abstract »    Full Text »    PDF »
Oxidative Modifications and Aggregation of Cu,Zn-Superoxide Dismutase Associated with Alzheimer and Parkinson Diseases.
J. Choi, H. D. Rees, S. T. Weintraub, A. I. Levey, L.-S. Chin, and L. Li (2005)
J. Biol. Chem. 280, 11648-11655
   Abstract »    Full Text »    PDF »
Reduction of Cysteine Sulfinic Acid by Sulfiredoxin Is Specific to 2-Cys Peroxiredoxins.
H. A. Woo, W. Jeong, T.-S. Chang, K. J. Park, S. J. Park, J. S. Yang, and S. G. Rhee (2005)
J. Biol. Chem. 280, 3125-3128
   Abstract »    Full Text »    PDF »
Hydrogen peroxide as a signal controlling plant programmed cell death.
T. S. Gechev and J. Hille (2005)
J. Cell Biol. 168, 17-20
   Abstract »    Full Text »    PDF »
Contribution of the Helicobacter pylori Thiol Peroxidase Bacterioferritin Comigratory Protein to Oxidative Stress Resistance and Host Colonization.
G. Wang, A. A. Olczak, J. P. Walton, and R. J. Maier (2005)
Infect. Immun. 73, 378-384
   Abstract »    Full Text »    PDF »
Characterization of Mammalian Sulfiredoxin and Its Reactivation of Hyperoxidized Peroxiredoxin through Reduction of Cysteine Sulfinic Acid in the Active Site to Cysteine.
T.-S. Chang, W. Jeong, H. A. Woo, S. M. Lee, S. Park, and S. G. Rhee (2004)
J. Biol. Chem. 279, 50994-51001
   Abstract »    Full Text »    PDF »
Regulation of Anaerobic Dehalorespiration by the Transcriptional Activator CprK.
S. M. Pop, R. J. Kolarik, and S. W. Ragsdale (2004)
J. Biol. Chem. 279, 49910-49918
   Abstract »    Full Text »    PDF »
Reversible oxidation and inactivation of the tumor suppressor PTEN in cells stimulated with peptide growth factors.
J. Kwon, S.-R. Lee, K.-S. Yang, Y. Ahn, Y. J. Kim, E. R. Stadtman, and S. G. Rhee (2004)
PNAS 101, 16419-16424
   Abstract »    Full Text »    PDF »
Role of Oxidative Modifications in Atherosclerosis.
R. Stocker and J. F. Keaney Jr. (2004)
Physiol Rev 84, 1381-1478
   Abstract »    Full Text »    PDF »
Redox signaling: thiol chemistry defines which reactive oxygen and nitrogen species can act as second messengers.
H. J. Forman, J. M. Fukuto, and M. Torres (2004)
Am J Physiol Cell Physiol 287, C246-C256
   Abstract »    Full Text »    PDF »
Biochemical Characterization of 2-Cys Peroxiredoxins from Schistosoma mansoni.
A. A. Sayed and D. L. Williams (2004)
J. Biol. Chem. 279, 26159-26166
   Abstract »    Full Text »    PDF »
The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization.
R. M. Canet-Aviles, M. A. Wilson, D. W. Miller, R. Ahmad, C. McLendon, S. Bandyopadhyay, M. J. Baptista, D. Ringe, G. A. Petsko, and M. R. Cookson (2004)
PNAS 101, 9103-9108
   Abstract »    Full Text »    PDF »
The Structure of the Organic Hydroperoxide Resistance Protein from Deinococcus radiodurans: DO CONFORMATIONAL CHANGES FACILITATE RECYCLING OF THE REDOX DISULFIDE?.
C. Meunier-Jamin, U. Kapp, G. A. Leonard, and S. McSweeney (2004)
J. Biol. Chem. 279, 25830-25837
   Abstract »    Full Text »    PDF »
Peroxiredoxin-null Yeast Cells Are Hypersensitive to Oxidative Stress and Are Genomically Unstable.
C.-M. Wong, K.-L. Siu, and D.-Y. Jin (2004)
J. Biol. Chem. 279, 23207-23213
   Abstract »    Full Text »    PDF »
Protein Disulfide Bond Formation in the Cytoplasm during Oxidative Stress.
R. C. Cumming, N. L. Andon, P. A. Haynes, M. Park, W. H. Fischer, and D. Schubert (2004)
J. Biol. Chem. 279, 21749-21758
   Abstract »    Full Text »    PDF »
Regeneration of Peroxiredoxins by p53-Regulated Sestrins, Homologs of Bacterial AhpD.
A. V. Budanov, A. A. Sablina, E. Feinstein, E. V. Koonin, and P. M. Chumakov (2004)
Science 304, 596-600
   Abstract »    Full Text »    PDF »
Taurine Supplementation Reduces Oxidative Stress and Improves Cardiovascular Function in an Iron-Overload Murine Model.
G. Y. Oudit, M. G. Trivieri, N. Khaper, T. Husain, G. J. Wilson, P. Liu, M. J. Sole, and P. H. Backx (2004)
Circulation 109, 1877-1885
   Abstract »    Full Text »    PDF »
The NAD(P)H Oxidase Homolog Nox4 Modulates Insulin-Stimulated Generation of H2O2 and Plays an Integral Role in Insulin Signal Transduction.
K. Mahadev, H. Motoshima, X. Wu, J. M. Ruddy, R. S. Arnold, G. Cheng, J. D. Lambeth, and B. J. Goldstein (2004)
Mol. Cell. Biol. 24, 1844-1854
   Abstract »    Full Text »    PDF »
Cytosolic Peroxiredoxin Attenuates The Activation Of Jnk And P38 But Potentiates That Of Erk In Hela Cells Stimulated With Tumor Necrosis Factor-{alpha}.
S. W. Kang, T.-S. Chang, T.-H. Lee, E. S. Kim, D.-Y. Yu, and S. G. Rhee (2004)
J. Biol. Chem. 279, 2535-2543
   Abstract »    Full Text »    PDF »
Reversible Oxidation of the Active Site Cysteine of Peroxiredoxins to Cysteine Sulfinic Acid: IMMUNOBLOT DETECTION WITH ANTIBODIES SPECIFIC FOR THE HYPEROXIDIZED CYSTEINE-CONTAINING SEQUENCE.
H. A. Woo, S. Won Kang, H. K. Kim, K.-S. Yang, H. Z. Chae, and S. G. Rhee (2003)
J. Biol. Chem. 278, 47361-47364
   Abstract »    Full Text »    PDF »
Phorbol Ester-dependent Activation of Peroxiredoxin I Gene Expression via a Protein Kinase C, Ras, p38 Mitogen-activated Protein Kinase Signaling Pathway.
A. Hess, N. Wijayanti, A. P. Neuschafer-Rube, N. Katz, T. Kietzmann, and S. Immenschuh (2003)
J. Biol. Chem. 278, 45419-45434
   Abstract »    Full Text »    PDF »
Regeneration of Peroxiredoxins during Recovery after Oxidative Stress: ONLY SOME OVEROXIDIZED PEROXIREDOXINS CAN BE REDUCED DURING RECOVERY AFTER OXIDATIVE STRESS.
M. Chevallet, E. Wagner, S. Luche, A. van Dorsselaer, E. Leize-Wagner, and T. Rabilloud (2003)
J. Biol. Chem. 278, 37146-37153
   Abstract »    Full Text »    PDF »
BIOCHEMISTRY: An Overoxidation Journey with a Return Ticket.
G. Georgiou and L. Masip (2003)
Science 300, 592-594
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882