Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.


Logo for

Science 300 (5620): 795-798

Copyright © 2003 by the American Association for the Advancement of Science

Activation of Integrin {alpha}IIbß3 by Modulation of Transmembrane Helix Associations

Renhao Li,1 Neal Mitra,2 Holly Gratkowski,1 Gaston Vilaire,2 Rustem Litvinov,3 Chandrasekaran Nagasami,3 John W. Weisel,3 James D. Lear,1 William F. DeGrado,1* Joel S. Bennett2*

Abstract: Transmembrane helices of integrin {alpha} and ß subunits have been implicated in the regulation of integrin activity. Two mutations, glycine-708 to asparagine-708 (G708N)and methionine-701 to asparagine-701, in the transmembrane helix of the ß3 subunit enabled integrin {alpha}IIbß3 to constitutively bind soluble fibrinogen. Further characterization of the G708N mutant revealed that it induced {alpha}IIbß3 clustering and constitutive phosphorylation of focal adhesion kinase. This mutation also enhanced the tendency of the transmembrane helix to form homotrimers. These results suggest that homomeric associations involving transmembrane domains provide a driving force for integrin activation. They also suggest a structural basis for the coincidence of integrin activation and clustering.

1 Department of Biochemistry and Biophysics, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
2 Hematology-Oncology Division, Department of Medicine, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
3 Department of Cell and Developmental Biology, School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.

* To whom correspondence should be addressed. E-mail: wdegrado{at} (W.F.D.); bennetts{at} (J.S.B.)

Distinct biophysical mechanisms of focal adhesion kinase mechanoactivation by different extracellular matrix proteins.
J. Seong, A. Tajik, J. Sun, J.-L. Guan, M. J. Humphries, S. E. Craig, A. Shekaran, A. J. Garcia, S. Lu, M. Z. Lin, et al. (2013)
PNAS 110, 19372-19377
   Abstract »    Full Text »    PDF »
Quantitative changes in focal adhesion kinase and its inhibitor, FRNK, drive load-dependent expression of costamere components.
S. Klossner, R. Li, S. Ruoss, A.-C. Durieux, and M. Fluck (2013)
Am J Physiol Regulatory Integrative Comp Physiol 305, R647-R657
   Abstract »    Full Text »    PDF »
Self-interaction of transmembrane helices representing pre-clusters from the human single-span membrane proteins.
J. Kirrbach, M. Krugliak, C. L. Ried, P. Pagel, I. T. Arkin, and D. Langosch (2013)
Bioinformatics 29, 1623-1630
   Abstract »    Full Text »    PDF »
{beta}1 Integrin NPXY Motifs Regulate Kidney Collecting-Duct Development and Maintenance by Induced-Fit Interactions with Cytosolic Proteins.
S. Mathew, Z. Lu, R. J. Palamuttam, G. Mernaugh, A. Hadziselimovic, J. Chen, N. Bulus, L. S. Gewin, M. Voehler, A. Meves, et al. (2012)
Mol. Cell. Biol. 32, 4080-4091
   Abstract »    Full Text »    PDF »
Finding the weakest link - exploring integrin-mediated mechanical molecular pathways.
P. Roca-Cusachs, T. Iskratsch, and M. P. Sheetz (2012)
J. Cell Sci. 125, 3025-3038
   Abstract »    Full Text »    PDF »
Reconstruction of integrin activation.
F. Ye, C. Kim, and M. H. Ginsberg (2012)
Blood 119, 26-33
   Abstract »    Full Text »    PDF »
Identification of Integrin {beta} Subunit Mutations That Alter Affinity for Extracellular Matrix Ligand.
T. Kendall, L. Mukai, A. L. Jannuzi, and T. A. Bunch (2011)
J. Biol. Chem. 286, 30981-30993
   Abstract »    Full Text »    PDF »
Integrin Structure, Activation, and Interactions.
I. D. Campbell and M. J. Humphries (2011)
Cold Spring Harb Perspect Biol 3, a004994
   Abstract »    Full Text »    PDF »
Tests of Integrin Transmembrane Domain Homo-oligomerization during Integrin Ligand Binding and Signaling.
W. Wang, J. Zhu, T. A. Springer, and B.-H. Luo (2011)
J. Biol. Chem. 286, 1860-1867
   Abstract »    Full Text »    PDF »
NMR analysis of the {alpha}IIb{beta}3 cytoplasmic interaction suggests a mechanism for integrin regulation.
D. G. Metcalf, D. T. Moore, Y. Wu, J. M. Kielec, K. Molnar, K. G. Valentine, A. J. Wand, J. S. Bennett, and W. F. DeGrado (2010)
PNAS 107, 22481-22486
   Abstract »    Full Text »    PDF »
Identification of Interacting Hot Spots in the {beta}3 Integrin Stalk Using Comprehensive Interface Design.
J. E. Donald, H. Zhu, R. I. Litvinov, W. F. DeGrado, and J. S. Bennett (2010)
J. Biol. Chem. 285, 38658-38665
   Abstract »    Full Text »    PDF »
Signaling During Platelet Adhesion and Activation.
Z. Li, M. K. Delaney, K. A. O'Brien, and X. Du (2010)
Arterioscler Thromb Vasc Biol 30, 2341-2349
   Abstract »    Full Text »    PDF »
Spatial organization of transmembrane receptor signalling.
I. Bethani, S. S. Skanland, I. Dikic, and A. Acker-Palmer (2010)
EMBO J. 29, 2677-2688
   Abstract »    Full Text »    PDF »
L718P mutation in the membrane-proximal cytoplasmic tail of {beta}3 promotes abnormal {alpha}IIb{beta}3 clustering and lipid microdomain coalescence, and associates with a thrombasthenia-like phenotype.
A. Jayo, I. Conde, P. Lastres, C. Martinez, J. Rivera, V. Vicente, and C. Gonzalez-Manchon (2010)
Haematologica 95, 1158-1166
   Abstract »    Full Text »    PDF »
The NPIY motif in the integrin {beta}1 tail dictates the requirement for talin-1 in outside-in signaling.
B. Nieves, C. W. Jones, R. Ward, Y. Ohta, C. G. Reverte, and S. E. LaFlamme (2010)
J. Cell Sci. 123, 1216-1226
   Abstract »    Full Text »    PDF »
Consensus motif for integrin transmembrane helix association.
B. W. Berger, D. W. Kulp, L. M. Span, J. L. DeGrado, P. C. Billings, A. Senes, J. S. Bennett, and W. F. DeGrado (2010)
PNAS 107, 703-708
   Abstract »    Full Text »    PDF »
Recreation of the terminal events in physiological integrin activation.
F. Ye, G. Hu, D. Taylor, B. Ratnikov, A. A. Bobkov, M. A. McLean, S. G. Sligar, K. A. Taylor, and M. H. Ginsberg (2010)
J. Cell Biol. 188, 157-173
   Abstract »    Full Text »    PDF »
Outside-In Signal Transmission by Conformational Changes in Integrin Mac-1.
C. T. Lefort, Y.-M. Hyun, J. B. Schultz, F.-Y. Law, R. E. Waugh, P. A. Knauf, and M. Kim (2009)
J. Immunol. 183, 6460-6468
   Abstract »    Full Text »    PDF »
Clustering of {alpha}5{beta}1 integrins determines adhesion strength whereas {alpha}v{beta}3 and talin enable mechanotransduction.
P. Roca-Cusachs, N. C. Gauthier, A. del Rio, and M. P. Sheetz (2009)
PNAS 106, 16245-16250
   Abstract »    Full Text »    PDF »
Predicting weakly stable regions, oligomerization state, and protein-protein interfaces in transmembrane domains of outer membrane proteins.
H. Naveed, R. Jackups Jr, and J. Liang (2009)
PNAS 106, 12735-12740
   Abstract »    Full Text »    PDF »
Interactions of platelet integrin {alpha}IIb and {beta}3 transmembrane domains in mammalian cell membranes and their role in integrin activation.
C. Kim, T.-L. Lau, T. S. Ulmer, and M. H. Ginsberg (2009)
Blood 113, 4747-4753
   Abstract »    Full Text »    PDF »
Syndecan-1 regulates {alpha}v{beta}3 and {alpha}v{beta}5 integrin activation during angiogenesis and is blocked by synstatin, a novel peptide inhibitor.
D. M. Beauvais, B. J. Ell, A. R. McWhorter, and A. C. Rapraeger (2009)
J. Exp. Med. 206, 691-705
   Abstract »    Full Text »    PDF »
Disruption of the Integrin {alpha}L{beta}2 Transmembrane Domain Interface by {beta}2 Thr-686 Mutation Activates {alpha}L{beta}2 and Promotes Micro-clustering of the {alpha}L Subunits.
A. Vararattanavech, X. Lin, J. Torres, and S.-M. Tan (2009)
J. Biol. Chem. 284, 3239-3249
   Abstract »    Full Text »    PDF »
Mechanisms that regulate adaptor binding to {beta}-integrin cytoplasmic tails.
K. R. Legate and R. Fassler (2009)
J. Cell Sci. 122, 187-198
   Abstract »    Full Text »    PDF »
Functional Adhesiveness of the CX3CL1 Chemokine Requires Its Aggregation: ROLE OF THE TRANSMEMBRANE DOMAIN.
P. Hermand, F. Pincet, S. Carvalho, H. Ansanay, E. Trinquet, M. Daoudi, C. Combadiere, and P. Deterre (2008)
J. Biol. Chem. 283, 30225-30234
   Abstract »    Full Text »    PDF »
Binding of soluble fibronectin to integrin {alpha}5{beta}1 - link to focal adhesion redistribution and contractile shape.
S. Huveneers, H. Truong, R. Fassler, A. Sonnenberg, and E. H. J. Danen (2008)
J. Cell Sci. 121, 2452-2462
   Abstract »    Full Text »    PDF »
Differences in Regulation of Drosophila and Vertebrate Integrin Affinity by Talin.
T. L. Helsten, T. A. Bunch, H. Kato, J. Yamanouchi, S. H. Choi, A. L. Jannuzi, C. C. Feral, M. H. Ginsberg, D. L. Brower, and S. J. Shattil (2008)
Mol. Biol. Cell 19, 3589-3598
   Abstract »    Full Text »    PDF »
Transmembrane domains of the syndecan family of growth factor coreceptors display a hierarchy of homotypic and heterotypic interactions.
I. C. Dews and K. R. MacKenzie (2007)
PNAS 104, 20782-20787
   Abstract »    Full Text »    PDF »
Changes in glycosylation of vitronectin modulate multimerization and collagen binding during liver regeneration.
K. Sano, K. Asanuma-Date, F. Arisaka, S. Hattori, and H. Ogawa (2007)
Glycobiology 17, 784-794
   Abstract »    Full Text »    PDF »
Ligand density dramatically affects integrin {alpha}IIb{beta}3-mediated platelet signaling and spreading.
M. Jirouskova, J. K. Jaiswal, and B. S. Coller (2007)
Blood 109, 5260-5269
   Abstract »    Full Text »    PDF »
Integrin {alpha}v{beta}3 Controls Activity and Oncogenic Potential of Primed c-Src.
S. Huveneers, I. van den Bout, P. Sonneveld, A. Sancho, A. Sonnenberg, and E. H.J. Danen (2007)
Cancer Res. 67, 2693-2700
   Abstract »    Full Text »    PDF »
Phospholipase C, calcium, and calmodulin are critical for {alpha}4{beta}1 integrin affinity up-regulation and monocyte arrest triggered by chemoattractants.
S. J. Hyduk, J. R. Chan,, S. T. Duffy, M. Chen, M. D. Peterson, T. K. Waddell, G. C. Digby, K. Szaszi, A. Kapus, and M. I. Cybulsky (2007)
Blood 109, 176-184
   Abstract »    Full Text »    PDF »
Activation of Platelet {alpha}IIbbeta3 by an Exogenous Peptide Corresponding to the Transmembrane Domain of {alpha}IIb.
H. Yin, R. I. Litvinov, G. Vilaire, H. Zhu, W. Li, G. A. Caputo, D. T. Moore, J. D. Lear, J. W. Weisel, W. F. DeGrado, et al. (2006)
J. Biol. Chem. 281, 36732-36741
   Abstract »    Full Text »    PDF »
Stepped Changes of Monovalent Ligand-binding Force during Ligand-induced Clustering of Integrin {alpha}IIBbeta3.
C.-F. Hsieh, B.-J. Chang, C.-H. Pai, H.-Y. Chen, J.-W. Tsai, Y.-H. Yi, Y.-T. Chiang, D.-W. Wang, S. Chi, L. Hsu, et al. (2006)
J. Biol. Chem. 281, 25466-25474
   Abstract »    Full Text »    PDF »
Molecular Mechanisms of Prothrombotic Risk Due to Genetic Variations in Platelet Genes: Enhanced Outside-In Signaling Through the Pro33 Variant of Integrin {beta}3.
K. V. Vijayan and P. F. Bray (2006)
Experimental Biology and Medicine 231, 505-513
   Abstract »    Full Text »    PDF »
Multiple factors contribute to integrin-talin interactions in vivo.
G. Tanentzapf, M. D. Martin-Bermudo, M. S. Hicks, and N. H. Brown (2006)
J. Cell Sci. 119, 1632-1644
   Abstract »    Full Text »    PDF »
Integrins regulate VE-cadherin and catenins: Dependence of this regulation on Src, but not on Ras.
Y. Wang, G. Jin, H. Miao, J. Y.-S. Li, S. Usami, and S. Chien (2006)
PNAS 103, 1774-1779
   Abstract »    Full Text »    PDF »
The mechanisms and dynamics of {alpha}v{beta}3 integrin clustering in living cells.
C. Cluzel, F. Saltel, J. Lussi, F. Paulhe, B. A. Imhof, and B. Wehrle-Haller (2005)
J. Cell Biol. 171, 383-392
   Abstract »    Full Text »    PDF »
Therapeutic expression of the platelet-specific integrin, {alpha}IIb{beta}3, in a murine model for Glanzmann thrombasthenia.
J. Fang, K. Hodivala-Dilke, B. D. Johnson, L. M. Du, R. O. Hynes, G. C. White II, and D. A. Wilcox (2005)
Blood 106, 2671-2679
   Abstract »    Full Text »    PDF »
The Crystal Structure of the Plexin-Semaphorin-Integrin Domain/Hybrid Domain/I-EGF1 Segment from the Human Integrin {beta}2 Subunit at 1.8-A Resolution.
M. Shi, K. Sundramurthy, B. Liu, S.-M. Tan, S. K. A. Law, and J. Lescar (2005)
J. Biol. Chem. 280, 30586-30593
   Abstract »    Full Text »    PDF »
The Identification of a Minimal Dimerization Motif QXXS That Enables Homo- and Hetero-association of Transmembrane Helices in Vivo.
N. Sal-Man, D. Gerber, and Y. Shai (2005)
J. Biol. Chem. 280, 27449-27457
   Abstract »    Full Text »    PDF »
Membrane-proximal {alpha}/{beta} Stalk Interactions Differentially Regulate Integrin Activation.
T. Kamata, M. Handa, Y. Sato, Y. Ikeda, and S. Aiso (2005)
J. Biol. Chem. 280, 24775-24783
   Abstract »    Full Text »    PDF »
The {beta}3 subunit of the integrin {alpha}IIb{beta}3 regulates {alpha}IIb-mediated outside-in signaling.
J. Liu, C. W. Jackson, R. A. Gruppo, L. K. Jennings, and T. K. Gartner (2005)
Blood 105, 4345-4352
   Abstract »    Full Text »    PDF »
Disrupting integrin transmembrane domain heterodimerization increases ligand binding affinity, not valency or clustering.
B.-H. Luo, C. V. Carman, J. Takagi, and T. A. Springer (2005)
PNAS 102, 3679-3684
   Abstract »    Full Text »    PDF »
Deletion of Mouse Embryo Fibroblast N-Acetylglucosaminyltransferase V Stimulates {alpha}5{beta}1 Integrin Expression Mediated by the Protein Kinase C Signaling Pathway.
H.-B. Guo, I. Lee, B. T. Bryan, and M. Pierce (2005)
J. Biol. Chem. 280, 8332-8342
   Abstract »    Full Text »    PDF »
CD98 modulates integrin {beta}1 function in polarized epithelial cells.
S. Cai, N. Bulus, P. M. Fonseca-Siesser, D. Chen, S. K. Hanks, A. Pozzi, and R. Zent (2005)
J. Cell Sci. 118, 889-899
   Abstract »    Full Text »    PDF »
Transmembrane Domain Helix Packing Stabilizes Integrin {alpha}IIb{beta}3 in the Low Affinity State.
A. W. Partridge, S. Liu, S. Kim, J. U. Bowie, and M. H. Ginsberg (2005)
J. Biol. Chem. 280, 7294-7300
   Abstract »    Full Text »    PDF »
A push-pull mechanism for regulating integrin function.
W. Li, D. G. Metcalf, R. Gorelik, R. Li, N. Mitra, V. Nanda, P. B. Law, J. D. Lear, W. F. DeGrado, and J. S. Bennett (2005)
PNAS 102, 1424-1429
   Abstract »    Full Text »    PDF »
Distinct Roles for the {alpha} and {beta} Subunits in the Functions of Integrin {alpha}M{beta}2.
D. A. Solovjov, E. Pluskota, and E. F. Plow (2005)
J. Biol. Chem. 280, 1336-1345
   Abstract »    Full Text »    PDF »
A 50-A Separation of the Integrin {alpha}v{beta}3 Extracellular Domain C Termini Reveals an Intermediate Activation State.
S. E. Gline, S. Cambier, C. Govaerts, and S. L. Nishimura (2004)
J. Biol. Chem. 279, 54567-54572
   Abstract »    Full Text »    PDF »
The primacy of affinity over clustering in regulation of adhesiveness of the integrin {alpha}L{beta}2.
M. Kim, C. V. Carman, W. Yang, A. Salas, and T. A. Springer (2004)
J. Cell Biol. 167, 1241-1253
   Abstract »    Full Text »    PDF »
Functional and structural correlations of individual {alpha}IIb{beta}3 molecules.
R. I. Litvinov, C. Nagaswami, G. Vilaire, H. Shuman, J. S. Bennett, and J. W. Weisel (2004)
Blood 104, 3979-3985
   Abstract »    Full Text »    PDF »
From The Cover: De novo design of defined helical bundles in membrane environments.
B. Bilgicer and K. Kumar (2004)
PNAS 101, 15324-15329
   Abstract »    Full Text »    PDF »
Integrins: dynamic scaffolds for adhesion and signaling in platelets.
S. J. Shattil and P. J. Newman (2004)
Blood 104, 1606-1615
   Abstract »    Full Text »    PDF »
Structures of Integrin Domains and Concerted Conformational Changes in the Bidirectional Signaling Mechanism of {alpha}IIb{beta}3.
J. J. Calvete (2004)
Experimental Biology and Medicine 229, 732-744
   Abstract »    Full Text »    PDF »
Caspase-12: a developmental link between G-protein-coupled receptors and integrin {alpha}IIb{beta}3 activation.
S. W. Kerrigan, M. Gaur, R. P. Murphy, S. J. Shattil, and A. D. Leavitt (2004)
Blood 104, 1327-1334
   Abstract »    Full Text »    PDF »
Dimerization of the Transmembrane Domain of Integrin {alpha}IIb Subunit in Cell Membranes.
R. Li, R. Gorelik, V. Nanda, P. B. Law, J. D. Lear, W. F. DeGrado, and J. S. Bennett (2004)
J. Biol. Chem. 279, 26666-26673
   Abstract »    Full Text »    PDF »
The Integrin {beta}1 Subunit Transmembrane Domain Regulates Phosphatidylinositol 3-Kinase-dependent Tyrosine Phosphorylation of Crk-associated Substrate.
A. Armulik, T. Velling, and S. Johansson (2004)
Mol. Biol. Cell 15, 2558-2567
   Abstract »    Full Text »    PDF »
Determination of N- and C-terminal Borders of the Transmembrane Domain of Integrin Subunits.
A. Stefansson, A. Armulik, I. Nilsson, G. von Heijne, and S. Johansson (2004)
J. Biol. Chem. 279, 21200-21205
   Abstract »    Full Text »    PDF »
Cholesterol-independent Interactions with CD47 Enhance {alpha}v{beta}3 Avidity.
J. F. McDonald, A. Zheleznyak, and W. A. Frazier (2004)
J. Biol. Chem. 279, 17301-17311
   Abstract »    Full Text »    PDF »
Lipid Rafts and Integrin Activation Regulate Oligodendrocyte Survival.
L. Decker and C. ffrench-Constant (2004)
J. Neurosci. 24, 3816-3825
   Abstract »    Full Text »    PDF »
Membrane proteins: A new method enters the fold.
J. U. Bowie (2004)
PNAS 101, 3995-3996
   Full Text »    PDF »
Membrane-mediated structural transitions at the cytoplasmic face during integrin activation.
O. Vinogradova, J. Vaynberg, X. Kong, T. A. Haas, E. F. Plow, and J. Qin (2004)
PNAS 101, 4094-4099
   Abstract »    Full Text »    PDF »
Involvement of Transmembrane Domain Interactions in Signal Transduction by {alpha}/{beta} Integrins.
D. Schneider and D. M. Engelman (2004)
J. Biol. Chem. 279, 9840-9846
   Abstract »    Full Text »    PDF »
Integrin activation.
D. A. Calderwood (2004)
J. Cell Sci. 117, 657-666
   Abstract »    Full Text »    PDF »
Src kinase activation by direct interaction with the integrin {beta} cytoplasmic domain.
E. G. Arias-Salgado, S. Lizano, S. Sarkar, J. S. Brugge, M. H. Ginsberg, and S. J. Shattil (2003)
PNAS 100, 13298-13302
   Abstract »    Full Text »    PDF »
Disruption of the {beta}3 663-687 disulfide bridge confers constitutive activity to {beta}3 integrins.
N. Butta, E. G. Arias-Salgado, C. Gonzalez-Manchon, M. Ferrer, S. Larrucea, M. S. Ayuso, and R. Parrilla (2003)
Blood 102, 2491-2497
   Abstract »    Full Text »    PDF »
Bidirectional Transmembrane Signaling by Cytoplasmic Domain Separation in Integrins.
M. Kim, C. V. Carman, and T. A. Springer (2003)
Science 301, 1720-1725
   Abstract »    Full Text »    PDF »
Folding and Stability of the Extracellular Domain of the Human Amyloid Precursor Protein.
M. G. Botelho, M. Gralle, C. L. P. Oliveira, I. Torriani, and S. T. Ferreira (2003)
J. Biol. Chem. 278, 34259-34267
   Abstract »    Full Text »    PDF »
STRUCTURAL BIOLOGY: Changing Partners.
R. O. Hynes (2003)
Science 300, 755-756
   Abstract »    Full Text »    PDF »

To Advertise     Find Products

Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882