Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 300 (5624): 1437-1439

Copyright © 2003 by the American Association for the Advancement of Science

Disrupted Timing of Discontinuous But Not Continuous Movements by Cerebellar Lesions

Rebecca M. C. Spencer,1,2* Howard N. Zelaznik,2 Jörn Diedrichsen,1 Richard B. Ivry1

Abstract: Patients with cerebellar damage are known to exhibit deficits in the temporal control of movements. We report that these deficits are restricted to discontinuous movements. Cerebellar patients exhibited no deficit in temporal variability when producing continuous, rhythmic movements. We hypothesize that the temporal properties of continuous movements are emergent and reflect the operation of other control parameters not associated with the cerebellum. In contrast, discontinuous movements require an explicit representation of the temporal goal, a function of the cerebellum. The requirement for explicit temporal representation provides a parsimonious account of cerebellar involvement in a range of tasks.

1 Department of Psychology, University of California, Berkeley, 3210 Tolman Hall #1650, Berkeley, CA 94720, USA.
2 Department of Health & Kinesiology, Integrative Program in Neuroscience, Purdue University, 1362 Lambert, West Lafayette, IN 47907, USA.

* To whom correspondence should be addressed. E-mail: rspencer{at}socrates.berkeley.edu


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Precise Control of Movement Kinematics by Optogenetic Inhibition of Purkinje Cell Activity.
S. A. Heiney, J. Kim, G. J. Augustine, and J. F. Medina (2014)
J. Neurosci. 34, 2321-2330
   Abstract »    Full Text »    PDF »
Delay activity of saccade-related neurons in the caudal dentate nucleus of the macaque cerebellum.
R. C. Ashmore and M. A. Sommer (2013)
J Neurophysiol 109, 2129-2144
   Abstract »    Full Text »    PDF »
Setup of a Novel Biofeedback Prototype for Sensorimotor Control of the Hand and Preliminary Application in Patients With Peripheral Nerve Injuries.
H.-Y. Chiu, H.-Y. Hsu, F.-C. Su, I.-M. Jou, C.-F. Lin, and L.-C. Kuo (2013)
Physical Therapy 93, 168-178
   Abstract »    Full Text »    PDF »
Pathophysiological distortions in time perception and timed performance.
M. J. Allman and W. H. Meck (2012)
Brain 135, 656-677
   Abstract »    Full Text »    PDF »
State space analysis of timing: exploiting task redundancy to reduce sensitivity to timing.
R. G. Cohen and D. Sternad (2012)
J Neurophysiol 107, 618-627
   Abstract »    Full Text »    PDF »
Long-term music training tunes how the brain temporally binds signals from multiple senses.
H. Lee and U. Noppeney (2011)
PNAS 108, E1441-E1450
   Abstract »    Full Text »    PDF »
Role of olivocerebellar system in timing without awareness.
X. Wu, J. Ashe, and K. O. Bushara (2011)
PNAS 108, 13818-13822
   Abstract »    Full Text »    PDF »
Distinct Neural Substrates of Duration-Based and Beat-Based Auditory Timing.
S. Teki, M. Grube, S. Kumar, and T. D. Griffiths (2011)
J. Neurosci. 31, 3805-3812
   Abstract »    Full Text »    PDF »
Dissociation of duration-based and beat-based auditory timing in cerebellar degeneration.
M. Grube, F. E. Cooper, P. F. Chinnery, and T. D. Griffiths (2010)
PNAS 107, 11597-11601
   Abstract »    Full Text »    PDF »
Encoding of Temporal Probabilities in the Human Brain.
D. Bueti, B. Bahrami, V. Walsh, and G. Rees (2010)
J. Neurosci. 30, 4343-4352
   Abstract »    Full Text »    PDF »
Asymmetric Transfer of Visuomotor Learning between Discrete and Rhythmic Movements.
T. Ikegami, M. Hirashima, G. Taga, and D. Nozaki (2010)
J. Neurosci. 30, 4515-4521
   Abstract »    Full Text »    PDF »
Subsecond Timing in Primates: Comparison of Interval Production Between Human Subjects and Rhesus Monkeys.
W. Zarco, H. Merchant, L. Prado, and J. C. Mendez (2009)
J Neurophysiol 102, 3191-3202
   Abstract »    Full Text »    PDF »
Glycinergic Projection Neurons of the Cerebellum.
M. W. Bagnall, B. Zingg, A. Sakatos, S. H. Moghadam, H. U. Zeilhofer, and S. d. Lac (2009)
J. Neurosci. 29, 10104-10110
   Abstract »    Full Text »    PDF »
Neural networks engaged in milliseconds and seconds time processing: evidence from transcranial magnetic stimulation and patients with cortical or subcortical dysfunction.
G. Koch, M. Oliveri, and C. Caltagirone (2009)
Phil Trans R Soc B 364, 1907-1918
   Abstract »    Full Text »    PDF »
Visuospatial Working Memory Capacity Predicts the Organization of Acquired Explicit Motor Sequences.
J. Bo and R. D. Seidler (2009)
J Neurophysiol 101, 3116-3125
   Abstract »    Full Text »    PDF »
Near Optimal Combination of Sensory and Motor Uncertainty in Time During a Naturalistic Perception-Action Task.
A. A. Faisal and D. M. Wolpert (2009)
J Neurophysiol 101, 1901-1912
   Abstract »    Full Text »    PDF »
A Cerebellar Deficit in Sensorimotor Prediction Explains Movement Timing Variability.
J. Bo, H. J. Block, J. E. Clark, and A. J. Bastian (2008)
J Neurophysiol 100, 2825-2832
   Abstract »    Full Text »    PDF »
The Cerebellum Predicts the Timing of Perceptual Events.
J. X. O'Reilly, M. M. Mesulam, and A. C. Nobre (2008)
J. Neurosci. 28, 2252-2260
   Abstract »    Full Text »    PDF »
Bilateral representation in the deep cerebellar nuclei.
D. S. Soteropoulos and S. N. Baker (2008)
J. Physiol. 586, 1117-1136
   Abstract »    Full Text »    PDF »
A Computational Model for Redundant Human Three-Dimensional Pointing Movements: Integration of Independent Spatial and Temporal Motor Plans Simplifies Movement Dynamics.
A. Biess, D. G. Liebermann, and T. Flash (2007)
J. Neurosci. 27, 13045-13064
   Abstract »    Full Text »    PDF »
Different Contributions of the Corpus Callosum and Cerebellum to Motor Coordination in Monkey.
D. S. Soteropoulos and S. N. Baker (2007)
J Neurophysiol 98, 2962-2973
   Abstract »    Full Text »    PDF »
Role of the Cerebellum in Externally Paced Rhythmic Finger Movements.
M. F. Del Olmo, B. Cheeran, G. Koch, and J. C. Rothwell (2007)
J Neurophysiol 98, 145-152
   Abstract »    Full Text »    PDF »
Dissociating Timing and Coordination as Functions of the Cerebellum.
J. Diedrichsen, S. E. Criscimagna-Hemminger, and R. Shadmehr (2007)
J. Neurosci. 27, 6291-6301
   Abstract »    Full Text »    PDF »
Bimanual Coordination During Rhythmic Movements in the Absence of Somatosensory Feedback.
R. M. C. Spencer, R. B. Ivry, D. Cattaert, and A. Semjen (2005)
J Neurophysiol 94, 2901-2910
   Abstract »    Full Text »    PDF »
Testing Bayesian Models of Human Coincidence Timing.
M. Miyazaki, D. Nozaki, and Y. Nakajima (2005)
J Neurophysiol 94, 395-399
   Abstract »    Full Text »    PDF »
Feed-forward inhibition shapes the spike output of cerebellar Purkinje cells.
W. Mittmann, U. Koch, and M. Hausser (2005)
J. Physiol. 563, 369-378
   Abstract »    Full Text »    PDF »
Evaluating the role of the cerebellum in temporal processing: beware of the null hypothesis.
R. B. Ivry and R. M. C. Spencer (2004)
Brain 127, E13
   Full Text »    PDF »
Does the representation of time depend on the cerebellum?: Effect of cerebellar stroke.
D. L. Harrington, R. R. Lee, L. A. Boyd, S. Z. Rapcsak, and R. T. Knight (2004)
Brain 127, 561-574
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882