Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 300 (5625): 1525-1527

Copyright © 2003 by the American Association for the Advancement of Science

The Signal to Move: D. discoideum Go Orienteering

Alan R. Kimmel1, and Carole A. Parent2*

Abstract: Cells migrating directionally toward a chemoattractant source display a highly polarized cytoskeletal organization, with F-actin localized predominantly at the anterior and myosin II at the lateral and posterior regions. Dictyostelium discoideum has proven a useful system for elucidating signaling pathways that regulate this chemotactic response. During development, extracellular adenosine 3', 5' monophosphate (cAMP) functions as a primary signal to activate cell surface cAMP receptors (cARs). These receptors transduce different signals depending on whether or not they are coupled to heterotrimeric guanine nucleotide–binding proteins (G proteins) (see the STKE Connections Maps). Multiple G protein–stimulated pathways interact to establish polarity in chemotaxing D. discoideum cells by localizing F-actin at their leading edge and by regulating the phosphorylation state and assembly of myosin II. Many of the molecular interactions described are fundamental to the regulation of chemotaxis in other eukaryotic cells.

1 Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD 20892, USA.
2 Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA.

* To whom correspondence should be addressed. E-mail: parentc{at}helix.nih.gov


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Actin cross-linking proteins cortexillin I and II are required for cAMP signaling during Dictyostelium chemotaxis and development.
S. Shu, X. Liu, P. W. Kriebel, M. P. Daniels, and E. D. Korn (2012)
Mol. Biol. Cell 23, 390-400
   Abstract »    Full Text »    PDF »
Combinatorial cell-specific regulation of GSK3 directs cell differentiation and polarity in Dictyostelium.
L. Kim, J. Brzostowski, A. Majithia, N.-S. Lee, V. McMains, and A. R. Kimmel (2011)
Development 138, 421-430
   Abstract »    Full Text »    PDF »
Mobility of G proteins is heterogeneous and polarized during chemotaxis.
F. van Hemert, M. D. Lazova, B. E. Snaar-Jagaska, and T. Schmidt (2010)
J. Cell Sci. 123, 2922-2930
   Abstract »    Full Text »    PDF »
Cell speed, persistence and information transmission during signal relay and collective migration.
C. P. McCann, P. W. Kriebel, C. A. Parent, and W. Losert (2010)
J. Cell Sci. 123, 1724-1731
   Abstract »    Full Text »    PDF »
FROUNT Is a Common Regulator of CCR2 and CCR5 Signaling to Control Directional Migration.
E. Toda, Y. Terashima, T. Sato, K. Hirose, S. Kanegasaki, and K. Matsushima (2009)
J. Immunol. 183, 6387-6394
   Abstract »    Full Text »    PDF »
Collective cell migration requires vesicular trafficking for chemoattractant delivery at the trailing edge.
P. W. Kriebel, V. A. Barr, E. C. Rericha, G. Zhang, and C. A. Parent (2008)
J. Cell Biol. 183, 949-961
   Abstract »    Full Text »    PDF »
A Protein with Similarity to PTEN Regulates Aggregation Territory Size by Decreasing Cyclic AMP Pulse Size during Dictyostelium discoideum Development.
Y. Tang and R. H. Gomer (2008)
Eukaryot. Cell 7, 1758-1770
   Abstract »    Full Text »    PDF »
Rap1 Activation in Response to cAMP Occurs Downstream of Ras Activation during Dictyostelium Aggregation.
P. Bolourani, G. B. Spiegelman, and G. Weeks (2008)
J. Biol. Chem. 283, 10232-10240
   Abstract »    Full Text »    PDF »
Role of Phosphatidylinositol 3-Kinases in Chemotaxis in Dictyostelium.
K. Takeda, A. T. Sasaki, H. Ha, H.-A Seung, and R. A. Firtel (2007)
J. Biol. Chem. 282, 11874-11884
   Abstract »    Full Text »    PDF »
The Trypanosoma brucei cAMP phosphodiesterases TbrPDEB1 and TbrPDEB2: flagellar enzymes that are essential for parasite virulence.
M. Oberholzer, G. Marti, M. Baresic, S. Kunz, A. Hemphill, and T. Seebeck (2007)
FASEB J 21, 720-731
   Abstract »    Full Text »    PDF »
Asymmetric Localization of Calpain 2 during Neutrophil Chemotaxis.
P. A. Nuzzi, M. A. Senetar, and A. Huttenlocher (2007)
Mol. Biol. Cell 18, 795-805
   Abstract »    Full Text »    PDF »
S-adenosylhomocysteine hydrolase is localized at the front of chemotaxing cells, suggesting a role for transmethylation during migration.
S. Shu, D. C. Mahadeo, X. Liu, W. Liu, C. A. Parent, and E. D. Korn (2006)
PNAS 103, 19788-19793
   Abstract »    Full Text »    PDF »
Nonadaptive Regulation of ERK2 in Dictyostelium: Implications for Mechanisms of cAMP Relay.
J. A. Brzostowski and A. R. Kimmel (2006)
Mol. Biol. Cell 17, 4220-4227
   Abstract »    Full Text »    PDF »
Cellular asymmetry and individuality in directional sensing.
A. Samadani, J. Mettetal, and A. van Oudenaarden (2006)
PNAS 103, 11549-11554
   Abstract »    Full Text »    PDF »
Single-molecule analysis of chemoattractant-stimulated membrane recruitment of a PH-domain-containing protein.
S. Matsuoka, M. Iijima, T. M. Watanabe, H. Kuwayama, T. Yanagida, P. N. Devreotes, and M. Ueda (2006)
J. Cell Sci. 119, 1071-1079
   Abstract »    Full Text »    PDF »
dictyBase, the model organism database for Dictyostelium discoideum.
R. L. Chisholm, P. Gaudet, E. M. Just, K. E. Pilcher, P. Fey, S. N. Merchant, and W. A. Kibbe (2006)
Nucleic Acids Res. 34, D423-D427
   Abstract »    Full Text »    PDF »
Microarray phenotyping in Dictyostelium reveals a regulon of chemotaxis genes.
E. O. Booth, N. V. Driessche, O. Zhuchenko, A. Kuspa, and G. Shaulsky (2005)
Bioinformatics 21, 4371-4377
   Abstract »    Full Text »    PDF »
Loss of SMEK, a Novel, Conserved Protein, Suppresses mek1 Null Cell Polarity, Chemotaxis, and Gene Expression Defects.
M. C. Mendoza, F. Du, N. Iranfar, N. Tang, H. Ma, W. F. Loomis, and R. A. Firtel (2005)
Mol. Cell. Biol. 25, 7839-7853
   Abstract »    Full Text »    PDF »
Controlling Cell Behavior Electrically: Current Views and Future Potential.
C. D. McCaig, A. M. Rajnicek, B. Song, and M. Zhao (2005)
Physiol Rev 85, 943-978
   Abstract »    Full Text »    PDF »
Cyclic AMP mediates keratinocyte directional migration in an electric field.
C. E. Pullar and R. R. Isseroff (2005)
J. Cell Sci. 118, 2023-2034
   Abstract »    Full Text »    PDF »
GCR1 Can Act Independently of Heterotrimeric G-Protein in Response to Brassinosteroids and Gibberellins in Arabidopsis Seed Germination.
J.-G. Chen, S. Pandey, J. Huang, J. M. Alonso, J. R. Ecker, S. M. Assmann, and A. M. Jones (2004)
Plant Physiology 135, 907-915
   Abstract »    Full Text »    PDF »
A G{alpha}-dependent pathway that antagonizes multiple chemoattractant responses that regulate directional cell movement.
J. A. Brzostowski, C. A. Parent, and A. R. Kimmel (2004)
Genes & Dev. 18, 805-815
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882