Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 300 (5627): 1957-1961

Copyright © 2003 by the American Association for the Advancement of Science

Translation of Polarity Cues into Asymmetric Spindle Positioning in Caenorhabditis elegans Embryos

Kelly Colombo,1 Stephan W. Grill,2 Randall J. Kimple,3 Francis S. Willard,3 David P. Siderovski,3 Pierre Gönczy1*

Abstract: Asymmetric divisions are crucial for generating cell diversity; they rely on coupling between polarity cues and spindle positioning, but how this coupling is achieved is poorly understood. In one-cell stage Caenorhabditis elegans embryos, polarity cues set by the PAR proteins mediate asymmetric spindle positioning by governing an imbalance of net pulling forces acting on spindle poles. We found that the GoLoco-containing proteins GPR-1 and GPR-2, as well as the G{alpha} subunits GOA-1 and GPA-16, were essential for generation of proper pulling forces. GPR-1/2 interacted with guanosine diphosphate-bound GOA-1 and were enriched on the posterior cortex in a par-3– and par-2–dependent manner. Thus, the extent of net pulling forces may depend on cortical G{alpha} activity, which is regulated by anterior-posterior polarity cues through GPR-1/2.

1 Swiss Institute for Experimental Cancer Research (ISREC), 1066 Epalinges/Lausanne, Switzerland.
2 Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
3 Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.

* To whom correspondence should be addressed. E-mail: pierre.gonczy{at}isrec.unil.ch


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Activators of G Protein Signaling Exhibit Broad Functionality and Define a Distinct Core Signaling Triad.
J. B. Blumer and S. M. Lanier (2014)
Mol. Pharmacol. 85, 388-396
   Abstract »    Full Text »    PDF »
Epithelial polarity and spindle orientation: intersecting pathways.
D. T. Bergstralh, T. Haack, and D. St Johnston (2013)
Phil Trans R Soc B 368, 20130291
   Abstract »    Full Text »    PDF »
F-actin asymmetry and the endoplasmic reticulum-associated TCC-1 protein contribute to stereotypic spindle movements in the Caenorhabditis elegans embryo.
C. W. H. Berends, J. Munoz, V. Portegijs, R. Schmidt, I. Grigoriev, M. Boxem, A. Akhmanova, A. J. R. Heck, and S. van den Heuvel (2013)
Mol. Biol. Cell 24, 2201-2215
   Abstract »    Full Text »    PDF »
Evolutionary comparisons reveal a positional switch for spindle pole oscillations in Caenorhabditis embryos.
S. Riche, M. Zouak, F. Argoul, A. Arneodo, J. Pecreaux, and M. Delattre (2013)
J. Cell Biol. 201, 653-662
   Abstract »    Full Text »    PDF »
Molecular pathways regulating mitotic spindle orientation in animal cells.
M. S. Lu and C. A. Johnston (2013)
Development 140, 1843-1856
   Abstract »    Full Text »    PDF »
Evidence for dynein and astral microtubule-mediated cortical release and transport of G{alpha}i/LGN/NuMA complex in mitotic cells.
Z. Zheng, Q. Wan, J. Liu, H. Zhu, X. Chu, and Q. Du (2013)
Mol. Biol. Cell 24, 901-913
   Abstract »    Full Text »    PDF »
Assembly and Function of the Regulator of G protein Signaling 14 (RGS14){middle dot}H-Ras Signaling Complex in Live Cells Are Regulated by G{alpha}i1 and G{alpha}i-linked G Protein-coupled Receptors.
C. P. Vellano, N. E. Brown, J. B. Blumer, and J. R. Hepler (2013)
J. Biol. Chem. 288, 3620-3631
   Abstract »    Full Text »    PDF »
Crystal Structures of the Scaffolding Protein LGN Reveal the General Mechanism by Which GoLoco Binding Motifs Inhibit the Release of GDP from G{alpha}i.
M. Jia, J. Li, J. Zhu, W. Wen, M. Zhang, and W. Wang (2012)
J. Biol. Chem. 287, 36766-36776
   Abstract »    Full Text »    PDF »
Cortical dynein is critical for proper spindle positioning in human cells.
S. Kotak, C. Busso, and P. Gonczy (2012)
J. Cell Biol. 199, 97-110
   Abstract »    Full Text »    PDF »
Actin filaments function as a tension sensor by tension-dependent binding of cofilin to the filament.
K. Hayakawa, H. Tatsumi, and M. Sokabe (2011)
J. Cell Biol. 195, 721-727
   Abstract »    Full Text »    PDF »
G Protein-coupled Receptors and Resistance to Inhibitors of Cholinesterase-8A (Ric-8A) Both Regulate the Regulator of G Protein Signaling 14 (RGS14){middle dot}G{alpha}i1 Complex in Live Cells.
C. P. Vellano, E. M. Maher, J. R. Hepler, and J. B. Blumer (2011)
J. Biol. Chem. 286, 38659-38669
   Abstract »    Full Text »    PDF »
Dynamic localization of C. elegans TPR-GoLoco proteins mediates mitotic spindle orientation by extrinsic signaling.
A. D. Werts, M. Roh-Johnson, and B. Goldstein (2011)
Development 138, 4411-4422
   Abstract »    Full Text »    PDF »
Resistance to Inhibitors of Cholinesterase-8A (Ric-8A) Is Critical for Growth Factor Receptor-induced Actin Cytoskeletal Reorganization.
L. Wang, D. Guo, B. Xing, J. J. Zhang, H.-B. Shu, L. Guo, and X.-Y. Huang (2011)
J. Biol. Chem. 286, 31055-31061
   Abstract »    Full Text »    PDF »
Visualization of dynein-dependent microtubule gliding at the cell cortex: implications for spindle positioning.
E. M. Gusnowski and M. Srayko (2011)
J. Cell Biol. 194, 377-386
   Abstract »    Full Text »    PDF »
Polarity mediates asymmetric trafficking of the G{beta} heterotrimeric G-protein subunit GPB-1 in C. elegans embryos.
K. Thyagarajan, K. Afshar, and P. Gonczy (2011)
Development 138, 2773-2782
   Abstract »    Full Text »    PDF »
Elaborating polarity: PAR proteins and the cytoskeleton.
J. Nance and J. A. Zallen (2011)
Development 138, 799-809
   Abstract »    Full Text »    PDF »
Structural Determinants of Affinity Enhancement between GoLoco Motifs and G-Protein {alpha} Subunit Mutants.
D. E. Bosch, A. J. Kimple, D. W. Sammond, R. E. Muller, M. J. Miley, M. Machius, B. Kuhlman, F. S. Willard, and D. P. Siderovski (2011)
J. Biol. Chem. 286, 3351-3358
   Abstract »    Full Text »    PDF »
Intracellular organelles mediate cytoplasmic pulling force for centrosome centration in the Caenorhabditis elegans early embryo.
K. Kimura and A. Kimura (2011)
PNAS 108, 137-142
   Abstract »    Full Text »    PDF »
Cortical domain correction repositions the polarity boundary to match the cytokinesis furrow in C. elegans embryos.
C. Schenk, H. Bringmann, A. A. Hyman, and C. R. Cowan (2010)
Development 137, 1743-1753
   Abstract »    Full Text »    PDF »
LET-99 inhibits lateral posterior pulling forces during asymmetric spindle elongation in C. elegans embryos.
L. E. Krueger, J.-C. Wu, M.-F. B. Tsou, and L. S. Rose (2010)
J. Cell Biol. 189, 481-495
   Abstract »    Full Text »    PDF »
Mechanical control of tissue and organ development.
T. Mammoto and D. E. Ingber (2010)
Development 137, 1407-1420
   Abstract »    Full Text »    PDF »
LGN regulates mitotic spindle orientation during epithelial morphogenesis.
Z. Zheng, H. Zhu, Q. Wan, J. Liu, Z. Xiao, D. P. Siderovski, and Q. Du (2010)
J. Cell Biol. 189, 275-288
   Abstract »    Full Text »    PDF »
Regulation of cortical contractility and spindle positioning by the protein phosphatase 6 PPH-6 in one-cell stage C. elegans embryos.
K. Afshar, M. E. Werner, Y. C. Tse, M. Glotzer, and P. Gonczy (2010)
Development 137, 237-247
   Abstract »    Full Text »    PDF »
Dividing cellular asymmetry: asymmetric cell division and its implications for stem cells and cancer.
R. A. Neumuller and J. A. Knoblich (2009)
Genes & Dev. 23, 2675-2699
   Abstract »    Full Text »    PDF »
Structural Basis for Self-Renewal of Neural Progenitors in Cortical Neurogenesis.
G. Shioi, D. Konno, A. Shitamukai, and F. Matsuzaki (2009)
Cereb Cortex 19, i55-i61
   Abstract »    Full Text »    PDF »
A Point Mutation to G{alpha}i Selectively Blocks GoLoco Motif Binding: DIRECT EVIDENCE FOR G{alpha}{middle dot}GoLoco COMPLEXES IN MITOTIC SPINDLE DYNAMICS.
F. S. Willard, Z. Zheng, J. Guo, G. J. Digby, A. J. Kimple, J. M. Conley, C. A. Johnston, D. Bosch, M. D. Willard, V. J. Watts, et al. (2008)
J. Biol. Chem. 283, 36698-36710
   Abstract »    Full Text »    PDF »
The PDZ and Band 4.1 Containing Protein Frmpd1 Regulates the Subcellular Location of Activator of G-protein Signaling 3 and Its Interaction with G-proteins.
N. An, J. B. Blumer, M. L. Bernard, and S. M. Lanier (2008)
J. Biol. Chem. 283, 24718-24728
   Abstract »    Full Text »    PDF »
Structural Determinants Underlying the Temperature-sensitive Nature of a G{alpha} Mutant in Asymmetric Cell Division of Caenorhabditis elegans.
C. A. Johnston, K. Afshar, J. T. Snyder, G. G. Tall, P. Gonczy, D. P. Siderovski, and F. S. Willard (2008)
J. Biol. Chem. 283, 21550-21558
   Abstract »    Full Text »    PDF »
Interphase microtubule bundles use global cell shape to guide spindle alignment in fission yeast.
R. R. Daga and P. Nurse (2008)
J. Cell Sci. 121, 1973-1980
   Abstract »    Full Text »    PDF »
RAB-11 Permissively Regulates Spindle Alignment by Modulating Metaphase Microtubule Dynamics in Caenorhabditis elegans Early Embryos.
H. Zhang, J. M. Squirrell, and J. G. White (2008)
Mol. Biol. Cell 19, 2553-2565
   Abstract »    Full Text »    PDF »
PLK-1 asymmetry contributes to asynchronous cell division of C. elegans embryos.
Y. Budirahardja and P. Gonczy (2008)
Development 135, 1303-1313
   Abstract »    Full Text »    PDF »
Polo kinases regulate C. elegans embryonic polarity via binding to DYRK2-primed MEX-5 and MEX-6.
Y. Nishi, E. Rogers, S. M. Robertson, and R. Lin (2008)
Development 135, 687-697
   Abstract »    Full Text »    PDF »
Local cortical pulling-force repression switches centrosomal centration and posterior displacement in C. elegans.
A. Kimura and S. Onami (2007)
J. Cell Biol. 179, 1347-1354
   Abstract »    Full Text »    PDF »
PAR-3 and PAR-1 Inhibit LET-99 Localization to Generate a Cortical Band Important for Spindle Positioning in Caenorhabditis elegans Embryos.
J.-C. Wu and L. S. Rose (2007)
Mol. Biol. Cell 18, 4470-4482
   Abstract »    Full Text »    PDF »
Heterotrimeric G protein signaling functions with dynein to promote spindle positioning in C. elegans.
C. Couwenbergs, J.-C. Labbe, M. Goulding, T. Marty, B. Bowerman, and M. Gotta (2007)
J. Cell Biol. 179, 15-22
   Abstract »    Full Text »    PDF »
Control of nuclear centration in the C. elegans zygote by receptor-independent G{alpha} signaling and myosin II.
M. B. Goulding, J. C. Canman, E. N. Senning, A. H. Marcus, and B. Bowerman (2007)
J. Cell Biol. 178, 1177-1191
   Abstract »    Full Text »    PDF »
G{alpha}i generates multiple Pins activation states to link cortical polarity and spindle orientation in Drosophila neuroblasts.
R. W. Nipper, K. H. Siller, N. R. Smith, C. Q. Doe, and K. E. Prehoda (2007)
PNAS 104, 14306-14311
   Abstract »    Full Text »    PDF »
Cortical centralspindlin and G{alpha} have parallel roles in furrow initiation in early C. elegans embryos.
K. J. C. Verbrugghe and J. G. White (2007)
J. Cell Sci. 120, 1772-1778
   Abstract »    Full Text »    PDF »
PAR-6 is required for junction formation but not apicobasal polarization in C. elegans embryonic epithelial cells.
R. Totong, A. Achilleos, and J. Nance (2007)
Development 134, 1259-1268
   Abstract »    Full Text »    PDF »
A default mechanism of spindle orientation based on cell shape is sufficient to generate cell fate diversity in polarised Xenopus blastomeres.
B. Strauss, R. J. Adams, and N. Papalopulu (2006)
Development 133, 3883-3893
   Abstract »    Full Text »    PDF »
Identification of a receptor-independent activator of G protein signaling (AGS8) in ischemic heart and its interaction with Gbeta{gamma}.
M. Sato, M. J. Cismowski, E. Toyota, A. V. Smrcka, P. A. Lucchesi, W. M. Chilian, and S. M. Lanier (2006)
PNAS 103, 797-802
   Abstract »    Full Text »    PDF »
Cortical localization of the G{alpha} protein GPA-16 requires RIC-8 function during C. elegans asymmetric cell division.
K. Afshar, F. S. Willard, K. Colombo, D. P. Siderovski, and P. Gonczy (2005)
Development 132, 4449-4459
   Abstract »    Full Text »    PDF »
Locomotion defects, together with Pins, regulates heterotrimeric G-protein signaling during Drosophila neuroblast asymmetric divisions.
F. Yu, H. Wang, H. Qian, R. Kaushik, M. Bownes, X. Yang, and W. Chia (2005)
Genes & Dev. 19, 1341-1353
   Abstract »    Full Text »    PDF »
Cleavage furrow formation and ingression during animal cytokinesis: a microtubule legacy.
P. P. D'Avino, M. S. Savoian, and D. M. Glover (2005)
J. Cell Sci. 118, 1549-1558
   Abstract »    Full Text »    PDF »
The RGS14 GoLoco Domain Discriminates among G{alpha}i Isoforms.
V. Mittal and M. E. Linder (2004)
J. Biol. Chem. 279, 46772-46778
   Abstract »    Full Text »    PDF »
The forces that position a mitotic spindle asymmetrically are tethered until after the time of spindle assembly.
J.-C. Labbe, E. K. McCarthy, and B. Goldstein (2004)
J. Cell Biol. 167, 245-256
   Abstract »    Full Text »    PDF »
Identification and Characterization of AGS4: A PROTEIN CONTAINING THREE G-PROTEIN REGULATORY MOTIFS THAT REGULATE THE ACTIVATION STATE OF Gi{alpha}.
X. Cao, M. J. Cismowski, M. Sato, J. B. Blumer, and S. M. Lanier (2004)
J. Biol. Chem. 279, 27567-27574
   Abstract »    Full Text »    PDF »
AGS3 and Signal Integration by G{alpha}s- and G{alpha}i-coupled Receptors: AGS3 BLOCKS THE SENSITIZATION OF ADENYLYL CYCLASE FOLLOWING PROLONGED STIMULATION OF A G{alpha}i-COUPLED RECEPTOR BY INFLUENCING PROCESSING OF G{alpha}i.
M. Sato, T. W. Gettys, and S. M. Lanier (2004)
J. Biol. Chem. 279, 13375-13382
   Abstract »    Full Text »    PDF »
Thermodynamic Characterization of the Binding of Activator of G Protein Signaling 3 (AGS3) and Peptides Derived from AGS3 with G{alpha}i1.
A. Adhikari and S. R. Sprang (2003)
J. Biol. Chem. 278, 51825-51832
   Abstract »    Full Text »    PDF »
LET-99 opposes G{alpha}/GPR signaling to generate asymmetry for spindle positioning in response to PAR and MES-1/SRC-1 signaling.
M.-F. B. Tsou, A. Hayashi, and L. S. Rose (2003)
Development 130, 5717-5730
   Abstract »    Full Text »    PDF »
Embryonic handedness choice in C. elegans involves the G{alpha} protein GPA-16.
D. C. Bergmann, M. Lee, B. Robertson, M.-F. B. Tsou, L. S. Rose, and W. B. Wood (2003)
Development 130, 5731-5740
   Abstract »    Full Text »    PDF »
Evidence Mounts for Receptor-Independent Activation of Heterotrimeric G Proteins Normally in Vivo: Positioning of the Mitotic Spindle in C. Elegans.
D. R. Manning (2003)
Sci. STKE 2003, pe35
   Abstract »    Full Text »    PDF »
The Distribution of Active Force Generators Controls Mitotic Spindle Position.
S. W. Grill, J. Howard, E. Schaffer, E. H. K. Stelzer, and A. A. Hyman (2003)
Science 301, 518-521
   Abstract »    Full Text »    PDF »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882