Note to users. If you're seeing this message, it means that your browser cannot find this page's style/presentation instructions -- or possibly that you are using a browser that does not support current Web standards. Find out more about why this message is appearing, and what you can do to make your experience of our site the best it can be.

Subscribe

Logo for

Science 301 (5629): 96-99

Copyright © 2003 by the American Association for the Advancement of Science

NompC TRP Channel Required for Vertebrate Sensory Hair Cell Mechanotransduction

Samuel Sidi,1 Rainer W. Friedrich,2 Teresa Nicolson1*{ddagger}

Abstract: The senses of hearing and balance in vertebrates rely on the sensory hair cells (HCs) of the inner ear. The central element of the HC's transduction apparatus is a mechanically gated ion channel of unknown identity. Here we report that the zebrafish ortholog of Drosophila no mechanoreceptor potential C (nompC), which encodes a transient receptor potential (TRP) channel, is critical for HC mechanotransduction. In zebrafish larvae, nompC is selectively expressed in sensory HCs. Morpholino-mediated removal of nompC function eliminated transduction-dependent endocytosis and electrical responses in HCs, resulting in larval deafness and imbalance. These observations indicate that nompC encodes a vertebrate HC mechanotransduction channel.

1 Max-Planck-Institut für Entwicklungsbiologie, Spemannstrasse 35, 72076 Tübingen, Germany. 2 Max-Planck-Institut für Medizinische Forschung, Jahnstrasse 29, 69120 Heidelberg, Germany.

Back to Top

{ddagger} Present address: Oregon Hearing Research Center and Vollum Institute, Oregon Health & Science University, Portland, OR 97201, USA.

* To whom correspondence should be addressed. E-mail: teresa.nicolson{at}tuebingen.mpg.de


THIS ARTICLE HAS BEEN CITED BY OTHER ARTICLES:
Rer1p maintains ciliary length and signaling by regulating {gamma}-secretase activity and Foxj1a levels.
N. Jurisch-Yaksi, A. J. Rose, H. Lu, T. Raemaekers, S. Munck, P. Baatsen, V. Baert, W. Vermeire, S. J. Scales, D. Verleyen, et al. (2013)
J. Cell Biol. 200, 709-720
   Abstract »    Full Text »    PDF »
Rapid positional cloning of zebrafish mutations by linkage and homozygosity mapping using whole-genome sequencing.
N. Obholzer, I. A. Swinburne, E. Schwab, A. V. Nechiporuk, T. Nicolson, and S. G. Megason (2012)
Development 139, 4280-4290
   Abstract »    Full Text »    PDF »
Permeation properties of the hair cell mechanotransducer channel provide insight into its molecular structure.
B. Pan, J. Waguespack, M. E. Schnee, C. LeBlanc, and A. J. Ricci (2012)
J Neurophysiol 107, 2408-2420
   Abstract »    Full Text »    PDF »
The Robustness of Caenorhabditis elegans Male Mating Behavior Depends on the Distributed Properties of Ray Sensory Neurons and Their Output through Core and Male-Specific Targets.
P. K. Koo, X. Bian, A. L. Sherlekar, M. R. Bunkers, and R. Lints (2011)
J. Neurosci. 31, 7497-7510
   Abstract »    Full Text »    PDF »
Mechanism of Spontaneous Activity in Afferent Neurons of the Zebrafish Lateral-Line Organ.
J. G. Trapani and T. Nicolson (2011)
J. Neurosci. 31, 1614-1623
   Abstract »    Full Text »    PDF »
Review series: The cell biology of touch.
E. A. Lumpkin, K. L. Marshall, and A. M. Nelson (2010)
J. Cell Biol. 191, 237-248
   Abstract »    Full Text »    PDF »
touche Is Required for Touch-Evoked Generator Potentials within Vertebrate Sensory Neurons.
S. E. Low, J. Ryan, S. M. Sprague, H. Hirata, W. W. Cui, W. Zhou, R. I. Hume, J. Y. Kuwada, and L. Saint-Amant (2010)
J. Neurosci. 30, 9359-9367
   Abstract »    Full Text »    PDF »
Auditory Input to CNS Is Acquired Coincidentally with Development of Inner Ear after Formation of Functional Afferent Pathway in Zebrafish.
M. Tanimoto, Y. Ota, K. Horikawa, and Y. Oda (2009)
J. Neurosci. 29, 2762-2767
   Abstract »    Full Text »    PDF »
Zebrafish TRPA1 Channels Are Required for Chemosensation But Not for Thermosensation or Mechanosensory Hair Cell Function.
D. A. Prober, S. Zimmerman, B. R. Myers, B. M. McDermott Jr, S.-H. Kim, S. Caron, J. Rihel, L. Solnica-Krezel, D. Julius, A. J. Hudspeth, et al. (2008)
J. Neurosci. 28, 10102-10110
   Abstract »    Full Text »    PDF »
The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio).
W. J. Van Trump and M. J. McHenry (2008)
J. Exp. Biol. 211, 2105-2115
   Abstract »    Full Text »    PDF »
The flexural stiffness of superficial neuromasts in the zebrafish (Danio rerio) lateral line.
M. J. McHenry and S. M. van Netten (2007)
J. Exp. Biol. 210, 4244-4253
   Abstract »    Full Text »    PDF »
Transient Receptor Potential Cation Channels in Disease.
B. Nilius, G. Owsianik, T. Voets, and J. A. Peters (2007)
Physiol Rev 87, 165-217
   Abstract »    Full Text »    PDF »
TRP channels and lipids: from Drosophila to mammalian physiology.
R. C. Hardie (2007)
J. Physiol. 578, 9-24
   Abstract »    Full Text »    PDF »
TRPM7 is a stretch- and swelling-activated cation channel involved in volume regulation in human epithelial cells.
T. Numata, T. Shimizu, and Y. Okada (2007)
Am J Physiol Cell Physiol 292, C460-C467
   Abstract »    Full Text »    PDF »
What is the hair cell transduction channel?.
D. P. Corey (2006)
J. Physiol. 576, 23-28
   Abstract »    Full Text »    PDF »
Usher I syndrome: unravelling the mechanisms that underlie the cohesion of the growing hair bundle in inner ear sensory cells.
A. El-Amraoui and C. Petit (2005)
J. Cell Sci. 118, 4593-4603
   Abstract »    Full Text »    PDF »
Xenopus TRPN1 (NOMPC) localizes to microtubule-based cilia in epithelial cells, including inner-ear hair cells.
J.-B. Shin, D. Adams, M. Paukert, M. Siba, S. Sidi, M. Levin, P. G. Gillespie, and S. Grunder (2005)
PNAS 102, 12572-12577
   Abstract »    Full Text »    PDF »
Gating of TRP channels: a voltage connection?.
B. Nilius, K. Talavera, G. Owsianik, J. Prenen, G. Droogmans, and T. Voets (2005)
J. Physiol. 567, 35-44
   Abstract »    Full Text »    PDF »
Comprehensive analysis of the ascidian genome reveals novel insights into the molecular evolution of ion channel genes.
Y. Okamura, A. Nishino, Y. Murata, K. Nakajo, H. Iwasaki, Y. Ohtsuka, M. Tanaka-Kunishima, N. Takahashi, Y. Hara, T. Yoshida, et al. (2005)
Physiol Genomics 22, 269-282
   Abstract »    Full Text »    PDF »
Developmental, Molecular, and Genetic Dissection of INa In Vivo in Embryonic Zebrafish Sensory Neurons.
R. H. Pineda, R. A. Heiser, and A. B. Ribera (2005)
J Neurophysiol 93, 3582-3593
   Abstract »    Full Text »    PDF »
Nociceptor and Hair Cell Transducer Properties of TRPA1, a Channel for Pain and Hearing.
K. Nagata, A. Duggan, G. Kumar, and J. Garcia-Anoveros (2005)
J. Neurosci. 25, 4052-4061
   Abstract »    Full Text »    PDF »
The TRP Superfamily of Cation Channels.
C. Montell (2005)
Sci. STKE 2005, re3
   Abstract »    Full Text »    PDF »
Autogenic modulation of mechanoreceptor excitability by glutamate release from synaptic-like vesicles: evidence from the rat muscle spindle primary sensory ending.
G. S. Bewick, B. Reid, C. Richardson, and R. W. Banks (2005)
J. Physiol. 562, 381-394
   Abstract »    Full Text »    PDF »
Power gain exhibited by motile mechanosensory neurons in Drosophila ears.
M. C. Gopfert, A. D. L. Humphris, J. T. Albert, D. Robert, and O. Hendrich (2005)
PNAS 102, 325-330
   Abstract »    Full Text »    PDF »
Acid-Sensing Ion Channel 2 Contributes a Major Component to Acid-Evoked Excitatory Responses in Spiral Ganglion Neurons and Plays a Role in Noise Susceptibility of Mice.
B.-G. Peng, S. Ahmad, S. Chen, P. Chen, M. P. Price, and X. Lin (2004)
J. Neurosci. 24, 10167-10175
   Abstract »    Full Text »    PDF »
Molecules and Mechanisms of Mechanotransduction.
M. B. Goodman, E. A. Lumpkin, A. Ricci, W. D. Tracey, M. Kernan, and T. Nicolson (2004)
J. Neurosci. 24, 9220-9222
   Full Text »    PDF »
Two Interdependent TRPV Channel Subunits, Inactive and Nanchung, Mediate Hearing in Drosophila.
Z. Gong, W. Son, Y. Doo Chung, J. Kim, D. W. Shin, C. A. McClung, Y. Lee, H. W. Lee, D.-J. Chang, B.-K. Kaang, et al. (2004)
J. Neurosci. 24, 9059-9066
   Abstract »    Full Text »    PDF »
Genetic Models of Mechanotransduction: The Nematode Caenorhabditis elegans.
P. Syntichaki and N. Tavernarakis (2004)
Physiol Rev 84, 1097-1153
   Abstract »    Full Text »    PDF »
The developmental genetics of auditory hair cells.
R. D. Hawkins and M. Lovett (2004)
Hum. Mol. Genet. 13, R289-R296
   Abstract »    Full Text »    PDF »
Probing the pore of the auditory hair cell mechanotransducer channel in turtle.
H. E. Farris, C. L. LeBlanc, J. Goswami, and A. J. Ricci (2004)
J. Physiol. 558, 769-792
   Abstract »    Full Text »    PDF »
Knockout of the ASIC2 channel in mice does not impair cutaneous mechanosensation, visceral mechanonociception and hearing.
C. Roza, J.-L. Puel, M. Kress, A. Baron, S. Diochot, M. Lazdunski, and R. Waldmann (2004)
J. Physiol. 558, 659-669
   Abstract »    Full Text »    PDF »
The Transient Receptor Potential Superfamily of Ion Channels.
C.-L. Huang (2004)
J. Am. Soc. Nephrol. 15, 1690-1699
   Abstract »    Full Text »    PDF »
Mechanosensitive ion channels: molecules of mechanotransduction.
B. Martinac (2004)
J. Cell Sci. 117, 2449-2460
   Abstract »    Full Text »    PDF »
Acid-sensing ion channels ASIC2 and ASIC3 do not contribute to mechanically activated currents in mammalian sensory neurones.
L. J. Drew, D. K. Rohrer, M. P. Price, K. E. Blaver, D. A. Cockayne, P. Cesare, and J. N. Wood (2004)
J. Physiol. 556, 691-710
   Abstract »    Full Text »    PDF »
gemini Encodes a Zebrafish L-Type Calcium Channel That Localizes at Sensory Hair Cell Ribbon Synapses.
S. Sidi, E. Busch-Nentwich, R. Friedrich, U. Schoenberger, and T. Nicolson (2004)
J. Neurosci. 24, 4213-4223
   Abstract »    Full Text »    PDF »
Mechanosensitive Channels: Multiplicity of Families and Gating Paradigms.
S. Sukharev and D. P. Corey (2004)
Sci. STKE 2004, re4
   Abstract »    Full Text »    PDF »
Mammalian TRPV4 (VR-OAC) directs behavioral responses to osmotic and mechanical stimuli in Caenorhabditis elegans.
W. Liedtke, D. M. Tobin, C. I. Bargmann, and J. M. Friedman (2003)
PNAS 100, 14531-14536
   Abstract »    Full Text »

To Advertise     Find Products


Science Signaling. ISSN 1937-9145 (online), 1945-0877 (print). Pre-2008: Science's STKE. ISSN 1525-8882